

 Copyright 1999 - 2005 MOST Cooperation

MOST
Media Oriented Systems Transport

Multimedia and Control
Networking Technology

MOST Specification
Rev 2.4
05/2005

Specification Document  Copyright 1999 - 2005 MOST Cooperation
Page 2

MOST®
Specification

MOST Specification 05/2005

Legal Notice

COPYRIGHT

 Copyright 1999 - 2005 MOST Cooperation. All rights reserved.

LICENSE DISCLAIMER

Nothing on any MOST Cooperation Web Site, or in any MOST Cooperation document, shall be
construed as conferring any license under any of the MOST Cooperation or its members or any third
party's intellectual property rights, whether by estoppel, implication, or otherwise.

CONTENT AND LIABILITY DISCLAIMER

MOST Cooperation or its members shall not be responsible for any errors or omissions contained at
any MOST Cooperation Web Site, or in any MOST Cooperation document, and reserves the right to
make changes without notice. Accordingly, all MOST Cooperation and third party information is
provided "AS IS". In addition, MOST Cooperation or its members are not responsible for the content of
any other Web Site linked to any MOST Cooperation Web Site. Links are provided as Internet
navigation tools only.

MOST COOPERATION AND ITS MEMBERS DISCLAIM ALL WARRANTIES WITH REGARD TO
THE INFORMATION (INCLUDING ANY SOFTWARE) PROVIDED, INCLUDING THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, AND
NON-INFRINGEMENT. Some jurisdictions do not allow the exclusion of implied warranties, so the
above exclusion may not apply to you.

In no event shall MOST Cooperation or its members be liable for any damages whatsoever, and in
particular MOST Cooperation or its members shall not be liable for special, indirect, consequential, or
incidental damages, or damages for lost profits, loss of revenue, or loss of use, arising out of or
related to any MOST Cooperation Web Site, any MOST Cooperation document, or the information
contained in it, whether such damages arise in contract, negligence, tort, under statute, in equity, at
law or otherwise.

FEEDBACK INFORMATION

Any information provided to MOST Cooperation in connection with any MOST Cooperation Web Site,
or any MOST Cooperation document, shall be provided by the submitter and received by MOST
Cooperation on a non-confidential basis. MOST Cooperation shall be free to use such information on
an unrestricted basis.

TRADEMARKS

MOST Cooperation and its members prohibit the unauthorized use of any of their trademarks. MOST
Cooperation specifically prohibits the use of the MOST Cooperation LOGO unless the use is approved
by the Steering Committee of MOST Cooperation.

SUPPORT AND FURTHER INFORMATION

For more information on the MOST technology, please contact:

 MOST Cooperation
 Administration
 P. O. Box 4327
 D-76028 Karlsruhe
 Germany

 Tel: (+49) (0) 721 966 50 00
 Fax: (+49) (0) 721 966 50 01
 E-mail: contact@mostcooperation.com
 Web: www.mostcooperation.com

Specification Document  Copyright 1999 - 2005 MOST Cooperation

 Page 3

MOST®
Specification

MOST Specification 05/2005

 Copyright 1999 - 2005 MOST Cooperation
All rights reserved

MOST is a registered trademark

Specification Document  Copyright 1999 - 2005 MOST Cooperation
Page 4

MOST®
Specification

MOST Specification 05/2005

Contents

1 INTRODUCTION.. 19
1.1 Purpose .. 19
1.2 Scope.. 19
1.3 MOST Document Structure .. 19
1.4 References ... 20
1.5 Overview... 20
2 APPLICATION SECTION.. 21
2.1 Overview of Data Channels.. 21

2.1.1 Control Channel... 21
2.1.2 Synchronous Channel ... 21
2.1.3 Asynchronous Channel ... 22
2.1.4 Managing Synch./Async. Bandwidth... 22

2.2 Logical Device Model.. 23
2.2.1 Function Block ... 23

2.2.1.1 Slave, Controller, HMI...24
2.2.1.2 First Introduction to MOST Functions ...24

2.2.2 Functions ... 25
2.2.3 Methods... 25
2.2.4 Properties .. 26

2.2.4.1 Setting a Property ...26
2.2.4.2 Reading a Property...27

2.2.5 Events.. 27
2.2.6 Function Interfaces.. 28
2.2.7 Definition Example .. 29
2.2.8 MOST Network Service... 31
2.2.9 Delegation, Heredity, Device Hierarchy .. 32

2.2.9.1 Delegation ..32
2.2.9.2 Heredity of Functions..34
2.2.9.3 Deriving Devices / Device Hierarchy...35

2.3 Protocols... 38
2.3.1 Protocol Basics.. 38
2.3.2 Structure of MOST Protocols .. 38

2.3.2.1 DeviceID ...38
2.3.2.2 FBlockID ...39
2.3.2.3 InstID ..41

2.3.2.3.1 Responsibility...41
2.3.2.3.2 Assigning InstID ...41
2.3.2.3.3 InstID of NetBlock ..41
2.3.2.3.4 InstID of NetworkMaster ..41
2.3.2.3.5 InstID of Function Block EnhancedTestability ..41
2.3.2.3.6 InstID Wildcards...42

2.3.2.4 FktID ...42
2.3.2.5 OPType ..44

2.3.2.5.1 Error...45
2.3.2.5.2 Start, Error ...50
2.3.2.5.3 StartResult, Result, Processing, Error ...50
2.3.2.5.4 StartAck, StartResultAck, ProcessingAck, ResultAck, ErrorAck ..54
2.3.2.5.5 Get, Status, Error ...54
2.3.2.5.6 Set, Status, Error ...54
2.3.2.5.7 SetGet, Status, Error..54
2.3.2.5.8 GetInterface, Interface, Error ...55
2.3.2.5.9 Increment and Decrement, Status, Error ...55
2.3.2.5.10 Abort, Error ..55
2.3.2.5.11 AbortAck, ErrorAck ..55

2.3.2.6 Length...56
2.3.2.7 Data and Basic Data Types ..56

2.3.2.7.1 Boolean..58
2.3.2.7.2 BitField ...58
2.3.2.7.3 Enum ...58

Specification Document  Copyright 1999 - 2005 MOST Cooperation

 Page 5

MOST®
Specification

MOST Specification 05/2005

2.3.2.7.4 Unsigned Byte..58
2.3.2.7.5 Signed Byte..59
2.3.2.7.6 Unsigned Word ..59
2.3.2.7.7 Signed Word ..59
2.3.2.7.8 Unsigned Long...59
2.3.2.7.9 Signed Long...59
2.3.2.7.10 String ...60
2.3.2.7.11 Stream ...60
2.3.2.7.12 Classified Stream...61
2.3.2.7.13 Short Stream..61

2.3.3 Function Formats in Documentation ... 62
2.3.4 Protocol Catalogs .. 62
2.3.5 Application Functions on MOST Network (Introduction) ... 63
2.3.6 Controller / Slave Communication... 66

2.3.6.1 Communication with Properties Using Shadows ..66
2.3.6.2 Communication with Methods...71

2.3.6.2.1 Standard Case ...71
2.3.6.2.2 Special Case Using Routing ..72

2.3.7 Seeking Communication Partner... 74
2.3.8 Requesting Function Block Information from a Device ... 74
2.3.9 Requesting Functions from a Function Block.. 75
2.3.10 Transmitting the Function Interface... 76

2.3.10.1 Principle ..76
2.3.10.2 Realization of the Ability to Extract the Function Interface..76

2.3.11 Function Classes... 77
2.3.11.1 Properties with a Single Parameter ..77

2.3.11.1.1 Function Class Switch..80
2.3.11.1.2 Function Class Number ...81
2.3.11.1.3 Function Class Text ...83
2.3.11.1.4 Function Class Enumeration ..84
2.3.11.1.5 Function Class BoolField ...85
2.3.11.1.6 Function Class BitSet...86
2.3.11.1.7 Function Class Container...88

2.3.11.2 Properties with Multiple Parameters ...89
2.3.11.2.1 Function Class Record...90
2.3.11.2.2 Function Class Array..92
2.3.11.2.3 Function Class Dynamic Array...95
2.3.11.2.4 Function Class LongArray..97
2.3.11.2.5 Function Class Sequence Property..104

2.3.11.3 Function Classes for Methods ..105
2.3.11.3.1 Function Class Trigger Method ..105
2.3.11.3.2 Function Class Sequence Method ...106

2.3.12 Handling Message Notification.. 107
3 NETWORK SECTION.. 110
3.1 MOST Network Interface Controller and its Internal Services.. 110

3.1.1 Bypass... 110
3.1.2 Source Data Bypass.. 110
3.1.3 Master/Slave, Active and Passive Components ... 110
3.1.4 Data Transport... 111

3.1.4.1 Blocks ...111
3.1.4.2 Frames ...111

3.1.4.2.1 Preamble..113
3.1.4.2.2 Boundary Descriptor ..113
3.1.4.2.3 MOST System Control Bits ..113

3.1.4.3 Source Data..114
3.1.4.3.1 Definition of Control Data and Source Data ...114
3.1.4.3.2 Differentiating Synchronous and Asynchronous Data..114
3.1.4.3.3 Source Data Interface ..114
3.1.4.3.4 Transparent Channels ...114
3.1.4.3.5 Synchronous Area ...115
3.1.4.3.6 Asynchronous (Packet Data) Area...115

3.1.4.4 Control Data..117
3.1.4.4.1 Control Data Interface..117

Specification Document  Copyright 1999 - 2005 MOST Cooperation
Page 6

MOST®
Specification

MOST Specification 05/2005

3.1.4.4.2 Description ...117
3.1.5 Internal Services.. 119

3.1.5.1 Addressing..119
3.1.5.2 Support at System Startup..120
3.1.5.3 Delay Recognition...120
3.1.5.4 Automatic Channel Allocation...120
3.1.5.5 Detection of Unused Channels ...120

3.2 Dynamic Behavior of a Device ... 121
3.2.1 Overview.. 121
3.2.2 NetInterface ... 123

3.2.2.1 NetInterfacePowerOff ...124
3.2.2.2 NetInterfaceInit ...124
3.2.2.3 NetInterfaceNormalOperation ...128
3.2.2.4 NetInterface Ring Break Diagnosis...131

3.2.3 Secondary Nodes.. 137
3.2.4 Power Management .. 138

3.2.4.1 Waking of the Network..138
3.2.4.2 Network Shutdown..139
3.2.4.3 Device Shutdown..141

3.2.4.3.1 Performing Device Shutdown...141
3.2.4.3.2 Waking from Device Shutdown..142
3.2.4.3.3 Persistence of Device Shutdown ...142
3.2.4.3.4 Response when Device Shutdown is unsupported ..142

3.2.5 Error Management .. 143
3.2.5.1 Handling of Light Off ...143
3.2.5.2 Fatal Error...144

3.2.5.2.1 Waking...144
3.2.5.2.2 Operation ...144

3.2.5.3 Unlock...145
3.2.5.4 Network Change Event...146
3.2.5.5 Failure of a Function Block ...147
3.2.5.6 “Hanging” of an Application ..148
3.2.5.7 Failure of a Network Slave Device..148
3.2.5.8 Low Voltage..149

3.2.6 Over-Temperature Management... 150
3.2.6.1 Introduction...150
3.2.6.2 Levels of Temperature Alert ...150
3.2.6.3 Re-Start Behavior ...151

3.3 Network Management .. 153
3.3.1 General Description of Network Management .. 153

3.3.1.1 System Startup ...153
3.3.1.1.1 Initialization of the Network ..153
3.3.1.1.2 Initialization on Application Level ...154

3.3.1.2 General Operation ..154
3.3.1.2.1 Finding communication partners ..154
3.3.1.2.2 Network Monitoring ..154
3.3.1.2.3 Dynamic Function Block Registrations...154

3.3.2 System States ... 155
3.3.2.1 System State NotOK...156
3.3.2.2 System State OK ..157

3.3.3 Network Master ... 158
3.3.3.1 Setting the System State ..158

3.3.3.1.1 Setting the System State to OK ...158
3.3.3.1.2 Setting the System State to NotOK (Network Reset) ...158

3.3.3.2 Central Registry ..159
3.3.3.2.1 Purpose ...159
3.3.3.2.2 Contents...159
3.3.3.2.3 Persistence of the Central Registry..159
3.3.3.2.4 Responsibility...159
3.3.3.2.5 Responding to Requests for Information from the Central Registry159
3.3.3.2.6 Secondary Nodes ..160

3.3.3.3 Specific Behavior During System Startup ...160
3.3.3.3.1 Valid Logical Node Address Not Available ...160
3.3.3.3.2 Valid Logical Node Address Available but No Central Registry ...160
3.3.3.3.3 Valid Logical Node Address and a Central Registry Available ...160

Specification Document  Copyright 1999 - 2005 MOST Cooperation

 Page 7

MOST®
Specification

MOST Specification 05/2005

3.3.3.3.4 Stable Network...160
3.3.3.4 Scanning the System (System Scan) ...161

3.3.3.4.1 Configuration Request Description ..161
3.3.3.4.2 Addressing ...161
3.3.3.4.3 Non Responding Network Slaves ..161
3.3.3.4.4 Retries of Non Responding Network Slaves ..161
3.3.3.4.5 Network Slave Continuous cause for System State NotOK ...161
3.3.3.4.6 Duration of System Scanning...161
3.3.3.4.7 Reporting the Results of a System Scan without Errors ..161

3.3.3.5 Invalid Registration Descriptions...162
3.3.3.5.1 Un-initialized Logical Node Address ..162
3.3.3.5.2 Invalid Logical Node Address...162
3.3.3.5.3 Duplicate Logical Node Addresses ..162
3.3.3.5.4 Duplicate InstID Registrations..162
3.3.3.5.5 Error Response..162

3.3.3.6 Updates to the Central Registry..163
3.3.3.6.1 Disappearing Function Blocks in System State OK ...163
3.3.3.6.2 Appearing Function Blocks in System State OK ..163
3.3.3.6.3 System scan without any change in Central Registry ..163
3.3.3.6.4 Large Updates to the Central Registry in System State OK...163
3.3.3.6.5 Non-responding Devices in System State OK..163

3.3.3.7 Miscellaneous Network Master Requirements..164
3.3.3.7.1 Network Change Event (NCE) ...164
3.3.3.7.2 Positioning of the Function Block NetworkMaster in the MOST Network...............................164

3.3.3.8 Verifying the Central Registry at System Startup (Verification Scan)..164
3.3.3.8.1 Missing Devices ...164

3.3.4 Network Slave ... 166
3.3.4.1 Decentral Registry ..166

3.3.4.1.1 Building a Decentral Registry...166
3.3.4.1.2 Updating the Decentral Registry ..166
3.3.4.1.3 Deleting the Decentral Registry ...166
3.3.4.1.4 Persistence of the Decentral Registry..166

3.3.4.2 Specific Startup Behavior ...167
3.3.4.2.1 Behavior When a Valid Logical Node Address is Not Available at System Startup................167
3.3.4.2.2 Behavior When a Valid Logical Node Address is Available at System Startup167
3.3.4.2.3 Deriving the Logical Node Address of the Network Master ..167

3.3.4.3 Normal Operation of the Network Slave ...168
3.3.4.3.1 Behavior in System State OK...168
3.3.4.3.2 Behavior in System State NotOK...168
3.3.4.3.3 Responding to Configuration Requests by the Network Master...168
3.3.4.3.4 Reporting Configuration Changes to the Network Master..168
3.3.4.3.5 Failure of a Function Block in a Network Slave..168
3.3.4.3.6 Failure of a Network Slave Device ...168
3.3.4.3.7 Unknown System State..168
3.3.4.3.8 Determining the System State ...168
3.3.4.3.9 Finding Communication Partners...169
3.3.4.3.10 Reaction to Configuration.Status(OK) When in System State NotOK..................................169
3.3.4.3.11 Reaction to Configuration.Status(OK) When in System State OK169
3.3.4.3.12 Reaction to Configuration.Status(NotOK) when in System State NotOK169
3.3.4.3.13 Reaction to Configuration.Status(NotOK) When in System State OK..................................169
3.3.4.3.14 Reaction to Configuration.Status(New)..170
3.3.4.3.15 Reaction to Configuration.Status(Invalid)...170

3.4 Accessing Control Channel .. 171
3.4.1 Addressing... 171
3.4.2 Assigning Priority Levels ... 173
3.4.3 Low Level Retries.. 173
3.4.4 High Level Retries ... 173
3.4.5 Basics for Automatic Adding of Physical Address... 174
3.4.6 Handling Overload in a Message Sink .. 175
3.4.7 MOST Message Services.. 176

3.4.7.1 Control Message Service..176
3.4.7.2 Application Message Service (AMS) and Application Protocols ...176

3.5 Handling Synchronous Data... 178
3.5.1 MOST Network Service API .. 178
3.5.2 Function Block Functions .. 179

Specification Document  Copyright 1999 - 2005 MOST Cooperation
Page 8

MOST®
Specification

MOST Specification 05/2005

3.5.2.1 NetBlock ...179
3.5.2.2 General Source / Sink Information..179

3.5.2.2.1 Synchronous Source..180
3.5.2.2.2 Synchronous Sink ..182
3.5.2.2.3 Handling of Double Commands ...183

3.5.2.3 Compensating Network Delay ..184
3.6 Handling Asynchronous (Packet) Data... 185

3.6.1 Direct Access to the MOST Network Interface Controller ... 185
3.6.1.1 Priorities..185

3.6.2 MOST Network Service... 186
3.6.2.1 Securing Data ...186

3.6.3 MOST Asynchronous Medium Access Control (MAMAC) .. 188
3.7 Controlling Synchronous / Asynchronous Bandwidth... 189
3.8 Connections.. 190

3.8.1 Synchronous Connections .. 190
3.8.1.1 ConnectionMaster...190
3.8.1.2 Establishing Synchronous Connections..192
3.8.1.3 Removing Synchronous Connections...194
3.8.1.4 Supervising Synchronous Connections ..195

3.8.1.4.1 Enabling Synchronous Output ...195
3.8.1.4.2 Source Drops ...195

3.9 Timing Definitions ... 196
3.10 Secondary Node ... 200

3.10.1 Scenario 1 ... 200
3.10.2 Scenario 2 ... 201
3.10.3 Scenario 3 ... 202

4 HARDWARE SECTION... 203
4.1 Basic HW Concept.. 203
4.2 Optical Interface Area... 204

4.2.1 Overview.. 204
4.2.2 Connection Systems (Pig Tail) .. 206

4.3 MOST Function Area.. 207
4.4 µC Area... 207
4.5 Application Area.. 208
4.6 Power Supply Area... 208
4.7 Voltage Levels .. 213
5 APPENDIX A: NETWORK INITIALIZATION .. 215
5.1 Network Master Section ... 215

5.1.1 System Startup when a Central Registry is Available ... 215
5.1.2 Flow of System Initialization Process by the Network Master... 217

5.2 Network Slave Section ... 219
6 APPENDIX B: SYNCHRONOUS DATA TYPES... 220

7 APPENDIX C: LIST OF FIGURES .. 222

8 APPENDIX D: LIST OF TABLES.. 224

INDEX.. 225

Specification Document  Copyright 1999 - 2005 MOST Cooperation

 Page 9

MOST®
Specification

MOST Specification 05/2005

Document History

Changes MOST Specification 2V3-00 to MOST Specification 2V4-00

Change
Ref.

Section Changes

2V4_001 General Old chapter 4.2.2 deleted.

2V4_002 General Old chapter 4.2.3 deleted.

2V4_003 2.1.1 Removed sentence about asynchronous channel administration.

2V4_004 2.2.1 Changed description for CD player.

2V4_005 2.2.8 System Service changed to Network Service.

2V4_006 2.3.2.5 Complemented table.

2V4_007 2.3.2.5.1 New wording for Segmentation error with Error Info 0x04.

2V4_008 2.3.2.5.1 Clarified ErrorCode 0x01.

2V4_009 2.3.2.5.1 Reserved error code for supplier specific error codes.

2V4_010 2.3.2.5.1 Improved language

2V4_011 2.3.2.5.1 For clarification, ErrorCode 0x02 is also explained

2V4_012 2.3.2.5.1 Error codes removed 0x08 and 0x09 removed from paragraph “Application error – Parameter
error”.

2V4_013 2.3.2.5.1 Added examples to ‘Syntax error’ and ‘Error secondary node’.

2V4_014 2.3.2.5.1 Updated figure 2-15.

2V4_015 2.3.2.5.5 Added timer tWaitForProperty.

2V4_016 2.3.2.5.7 Added timer tWaitForProperty.

2V4_017 2.3.2.5.10
2.3.2.5.11

Changed description for Abort and AbortAck.

2V4_018 2.3.2.7
2.3.2.7.13

Added data type short stream.

2V4_019 2.3.2.7.2 Representation of Boolean Data Types

2V4_020 2.3.2.7.12 Clarification that there is no coding Byte before the string and the string is always coded in
ASCII.

2V4_021 2.3.5
2.3.6

InstID changed from 0 to 1.

2V4_022 2.3.11.1 Added optypes SetGet and Get to function classes Switch and Number in table.

2V4_023 2.3.11.2.1
2.3.11.2.2

Updated tables that describe IntDesc.

2V4_024 2.3.11.2.3 Deleted EI4 in example.

2V4_025 2.3.11.2.4 Completed tables with lost data.

2V4_026 2.3.11.2.4.2 Changed wording for ArrayWindow.

2V4_027 2.3.11.3.2 Updated parameter list for Interface in table.

2V4_028 2.3.12 Increased description of deletion of entries.

2V4_029 2.3.12 Notification changed to FktId.

2V4_030 3.1.1 Section name Electrical Bypass changed to only Bypass.

2V4_031 3.1.1 Changed description for electrical bypass.

2V4_032 3.1.5.1 Reserved device address 0x0FF0 as optional for debug purpose.

2V4_033 3.1.4.3.4
3.2.2.2
3.2.2.3
3.2.2.4
3.6.1.1
6

Removal of MOST transceiver register references.

Specification Document  Copyright 1999 - 2005 MOST Cooperation
Page 10

MOST®
Specification

MOST Specification 05/2005

Change
Ref.

Section Changes

2V4_034 3.2.2.2
3.2.5.2.1

Replaced tMaster and tSlave with tConfig.

2V4_035 3.2.2.4 Replaced t_off by t_restart in Figure 3-13.

2V4_036 3.2.4 Changed description.

2V4_037 3.2.4.2
3.9

Added timer tSlaveShutdown.

2V4_038 3.2.4.3.1 Increased description for “Request Stage”.

2V4_039 3.2.5.4 New definition of NCE.

2V4_040 3.3.2.2 Wording changed in bullet number 4.

2V4_041 3.3.2.2 The Connection Manager must not de-allocate channels.

2V4_042 3.3.3.1.2
3.3.3.3.4
3.9

Changed timer tWaitAfterNetOn to tWaitBeforeScan and extended timer to cover
Configuration.Status(NotOk).

2V4_043 3.3.3.4.7 Changed description.

2V4_044 3.3.3.6.3 Changed the headline.

2V4_045 3.3.3.6.3 NWM should send a Config.New with an empty list when a network scan that was triggered by
an NCE could not detect any changes to the registry.

2V4_046 3.3.4.3.13 Chapter updated.

2V4_047 3.4.1 Group Address part extended.

2V4_048 3.4.1 Four changed to five.

2V4_049 3.4.2 Reduced chapter about control message priority.

2V4_050 3.5.2.1 Improved language.

2V4_051 3.5.2.2 Channel lists must always be in ascending order.

2V4_052 3.5.2.2.1 Increased requirements for Connection Manager.

2V4_053 3.5.2.2.3 Sink changed to source.

2V4_054 3.7 Deleted part that describes Boundary.

2V4_055 3.8.1.1 InstID changed to 1.

2V4_056 3.8.1.1 Extended parameter lists.

2V4_057 3.8.1.2 ResultAck changed to Result.

2V4_058 3.9 Added new timer tWaitForProperty.

2V4_059 3.10 A third scenario added, where primary node handles Ctrl + Stream and the secondary node
handles Packet.

2V4_060 3.10.2 Extended for clarification.

Changes MOST Specification 2V2-00 to MOST Specification 2V3-00

Change
Ref.

Section Changes

2V3_001 General NetServices replaced by Network Service

2V3_002 General MOST Transceiver replaced by MOST Network Interface Controller
2V3_003 General Function Catalog replaced by FBlock Specification
2V3_004 General Differentiation between all-bypass and source data bypass.
2V3_005 General Old chapter 3.1.5.2 removed.
2V3_006 General Old chapter 3.1.5.7 removed
2V3_007 General Old chapter 3.3 moved to 3.4 and some contents distributed to other chapters.
2V3_008 General 3.3.8 “Direct Access to OS8104” and 3.3.9 “Remote Control” were removed.
2V3_009 1 Chapter reworked, new document structure.

2V3_010 2.1.2 Connection Manager introduced.

2V3_011 2.1.4 MOSTSet Boundary removed

Specification Document  Copyright 1999 - 2005 MOST Cooperation

 Page 11

MOST®
Specification

MOST Specification 05/2005

Change
Ref.

Section Changes

2V3_012 2.2.8 Is now MOST Network Service overview. Picture changed.

2V3_013 2.3.2.2 Connection Master not mandatory. FBlock Enhanced Testability added.
2V3_014 2.3.2.3 Description of InstIDs improved. Section on handling InstID of function block Enhanced

Testability added.
2V3 015 2.3.2.3.2 Added Note: Wildcard must not be used for InstID assignment.
2V3 016 2.3.2.3.4 InstID NWM added

2V3_017 2.3.2.5.1 Error codes 0x08 and 0x09 deprecated. Application notified when segmentation error occurs.
No ErrorAck on segmentation errors.

2V3_018 2.3.2.5.3 Added t_ProcessingDefault1, t_ProcessingDefault2, t_WaitForProcessing1,
t_WaitForProcessing2 to text and pictures.

2V3_019 2.3.2.5.5 tProperty introduced.
2V3_020 2.3.2.5.7 tProperty introduced.
2V3_021 2.3.2.7 Reference to MOST High removed.
2V3_022 2.3.2.7.10 DAB Charsets added.
2V3_023 2.3.8 FBlock Enhanced Testability does not need to be listed.
2V3_024 2.3.11.2 Overview table added.
2V3_025 2.3.11.2.4.2 Reference to Layer 2 of NetService removed.
2V3_026 2.3.11.2.5 Function Class Sequence Property added.
2V3_027 2.3.11.3 Overview table added.
2V3_028 2.3.11.3.2 Function Class Sequence Method added.
2V3_029 2.3.12 Error handling extended.
2V3_030 3.1.1 Changed “Rx pin” to “Tx pin”
2V3_031 3.1.4.4.2 Remote Access removed. Transceiver register reference removed. Standalone mode

removed. Remote GetSource added.
2V3_032 3.1.5.1 SAI removed. Table changed.
2V3_033 3.1.5.2 Standalone mode removed.
2V3_034 3.1.5.3 Transceiver specifics removed
2V3_035 3.1.5.4 Transceiver specifics removed. Time estimation removed.
2V3_036 3.1.5.8 Rewritten without transceiver registers.
2V3_037 3.2.2.2 As soon as the initialization of the MOST Network Interface Controller starts, the logical node

address in the MOST Network Interface Controller has to be set to 0x0FFE.

2V3_038 3.2.2 Setting logical node address in MOST Network Interface Controller has been added to Figure
3-4, Figure 3-5, and Figure 3-6. Note that Figure 3-5 and have switched places from previous
version.

2V3_039 3.2.2.4 t_Diag_Start and t_Diag_Restart added
2V3_040 3.2.2.4 Figure 3-10 and Figure 3-12, Diagnosis Normal Shut Down replaced by Diagnosis Ready.
2V3_041 3.2.4 Power Management section reworked. The Shutdown procedure has been divided into

Network Shutdown and Device Shutdown. The Device Shutdown procedure is new.
2V3_042 3.2.5 Configuration.Status NotOk added as a case for securing synchronous data. Also changed so

that sinks have to mute in case of an error. Not sources.
2V3_043 3.2.5.4 New definition of Network Change Event.
2V3_044 3.2.5.5 Note rewritten and maximum changed to 11 Bytes. NWM has InstID changed to 1
2V3_045 3.2.5.7 Failure of a Network Slave Device added.
2V3_046 3.2.5.8 Figure 3-17, Aplication may PowerOff in “Device Standby”. Voltage levels are no longer

exactApplication removed from power states. Note added.
2V3_047 3.3 Network Management section is new. This section replaces section 3.2.3 and 3.3.5 of MOST

Specification V2.2.
2V3 048 3.3.3.3.4 Introduced a new timer tWaitAfterNetOn.
2V3 049 3.3.4.3.2 Deleted : The exception…(rest of paragraph)
2V3 050 3.3.4.3.8 Determination of System State clarified
2V3 051 3.4 This is old chapter 3.3
2V3 052 3.4.1 Address descriptions changed and Internal Node Communication Address added.
2V3 053 3.4.5 Section contains an example of Basics For Automatic Adding of Physical Address. This

section is compiled from parts of section 3.3.5 of MOST Specification V2.2.
2V3 054 3.5 Chapter reworked and SourceConnect added. Mute was changed to SetGet.
2V3 055 3.5.1 NetServices routines removed.
2V3 056 3.5.2.1 Added remark that the SourceHandles function should only be used for debugging purposes.
2V3 057 3.5.2.2 Added that sources and sinks are numbered in ascending order starting from 1.
2V3 058 3.6.2.1 Ethernet Frames replaced by MAMAC Packets.
2V3 059 3.7 Boundary is now SetGet and NWM has InstID 1 in example.
2V3 060 3.8 Reworked. t_DeadlockPrev added. t_CleanChannels added and RemoteGetSource

mentioned in Supervising Synchronous Connections.
2V3 061 3.8.1.4 Reworked supervising synchronous connections
2V3 062 3.9 New Timing Definition table.
2V3 063 4.1 Picture is only an example solution.

Specification Document  Copyright 1999 - 2005 MOST Cooperation
Page 12

MOST®
Specification

MOST Specification 05/2005

Change
Ref.

Section Changes

2V3 064 4.2.2 Table removed.
2V3 065 4.3 Standalone mode removed.
2V3 066 4.6 Absolute power values removed from the picture. Relative values introduced. SwitchToPower

detector is optional.
2V3 067 4.7 Absolute power values replaced by relative values. Application changed to device.
2V3 068 Appendix A:

Network
Initialization

Added. Contains information from old chapter 3.4.

Specification Document  Copyright 1999 - 2005 MOST Cooperation

 Page 13

MOST®
Specification

MOST Specification 05/2005

Changes MOST Specification 2V1-00 to MOST Specification 2V2-00

Change
Ref.

Section Changes

2V2_001 Bibliography - Added [9] MAMAC Specification.

2V2_002 1 - Figure 1-1 updated with MAMAC. Function catalog has been split

2V2_003 2. 2. 2 - Events are only generated if requested.

2V2_004 2. 2. 4. 2 - SetResult changed to SetGet. Incrementing/decrementing added to the table.

2V2_005 2. 2. 10. 1 - Removed a table and the surrounding text.

2V2_006 2. 3. 2. 2 - Added Mandatory to Table2-2. Added the following function blocks to Table 2-2 and
Table 2-3:
Handsfree Processor: 0x28
DVD Video Player: 0x34
TMC Decoder: 0x53
Bluetooth: 0x54

2V2_007 2.3.2.3 - Changed default instance ID to 0x01. Removed two sentences that had to do with the
old way the instance ids worked.

2V2_008 2.3.2.4 - Added NotificationCheck.

2V2_009 2.3.2.5.1 - Re-numbered the list correctly. Added text to Method Aborted

2V2_010 2.3.2.5.2 - Removed Result and Processing from the headline. Rephrased the text.

2V2_011 2.3.2.5.3 - Figure 2-16 and Figure 2-17 now use “yes” and “no”.

2V2_012 2.3.2.5.7 - Added information about the Get part of SetGet.

2V2_013 2.3.2.5.9 - Added Status, Error to the headline.

2V2_014 2.3.2.5.10
2.3.2.5.11

- Added Error/ErrorAck to the headlines.
- Added references to Method Aborted.

2V2_015 2.3.2.7 - Classified stream added. Also a note about MOST High was added.

2V2_016 2.3.2.7 - Values of example 2 corrected. The first sentence on the same page was re-written.

2V2_017 2.3.2.7.10 - RDS character set added and a warning about RDS strings size.
- Also added warning that character sets can’t contain null characters.
- Added example of empty RDS string.
- Added Reserved and Proprietary string types.
- Added Unicode to the UTF8 lines and UTF16 to the Unicode lines.
- Removed the ASCII code type.

2V2_018 2.3.2.7.12 - Classified Stream type added.

2V2_019 2.3.4 - Removed the paragraph that provided information about Protocol Catalogs in OASIS
tools.

2V2_020 2.3.5 - Changed instance ID to 1. Since default instance ID was changed.

2V2_021 2.3.11.1 - Changed to a table.
- Added Channel Type and Reserved bitfields.
- Added that Unicode is not ASCII compatible
- Added Table 2-9 and descriptions about the different modes that can be set through

Channel Type.
- Added Function Class Container (0x1B)
- Changed 0x1A to BitSet

2V2_022 2.3.11.1.2 - Changed mils to miles in Table 2-10.

2V2_023 2.3.11.1.7 - Added Function Class Container.

2V2_024 2.3.11.2.3
2.3.11.2.4.2

- Changed <> to = in front of “0x01not allowed, no access to Tag”

2V2_025 2.3.11.2.4.3 - Clarified that parameters are not used in mode Top and Bottom.
- Clarified what happens when an invalid position of the ArrayWindow is reached.

2V2_026 2.3.11.2.4.4 - Added Re-synchronization of ArrayWindows.

2V2_027 2.3.12 - Removed the requirement of three entries.

2V2_028 3.2.2.3 - Added text and Figure 3-7 to better explain how devices behave when unlocks occur.

Specification Document  Copyright 1999 - 2005 MOST Cooperation
Page 14

MOST®
Specification

MOST Specification 05/2005

Change
Ref.

Section Changes

2V2_029 3.2.2.4 - Changed timer from tLock to tDiag_Lock

2V2_030 3.2.3.1 - Added chapter about Configuration Status Events

2V2_031 3.2.3.2 - Added information about tBypass which is set to 200ms.
- Changed Figure 3-14 to include a new timer.

2V2_032 3.2.3.3 - Removed the requirement to store the Decentral Registry in buffered RAM.

2V2_033 3.2.5.1 - Added information about electrical wakeups.

2V2_034 3.2.6.3 - Added a sentence to explain that the behavior applies to all sinks.

2V2_035 3.2.6.4 - Added that the status message may not be sent before the NetworkMaster has asked
the device.

2V2_036 3.2.6.6 - Removed the Power Save Mode and altered the text to fit the new structure.
- Figure 3-21 was redrawn.

2V2_037 3.2.7 - Included a chapter about Over-Temperature Management.

2V2_038 3.3.1 - Changed the text about Node Position Address.

2V2_039 3.3.5.3 - Changed a “nein” to ”no” in Figure 3-23.

2V2_040 3.3.6 - Added a “yes” to Figure 3-24.

2V2_041 3.3.7.2 - Added a maximum length to segmented transfers.

2V2_042 3.4.1.1.2.1 - Changed the second parameter to RequiredChannels.
- Added that allocation must not be done partially.

2V2_043 3.4.1.1.3 - Added “Handling of Handling of Double (De)/Allocate/(Dis)Connect Commands”

2V2_044 3.5.2.1 - Added TelID “B” for MAMAC48

2V2_045 3.5.3 - Removed chapter about MAMAC and included a short overview and a reference to [9].

2V2_046 3.7.1.2 - Point 5 was updated to RequiredChannels. Point 7 was removed.

2V2_047 3.8 - tConfig changed to 2000ms.
- tBypass added.
- tWaitAfterNCE changed to 200ms, and it is now a minimum
- Added the Sentence “This time also applies to a shutdown after a slave-wakeup.” to

tShutDown.
- tRestart changed to 300 ms or MPR*15 ms. Added “The 300ms minimum applies to

networks containing up to 20 devices. For larger networks the time can be calculated as
follows: tRestart > MPR * 15ms”.

- tDelayCfgRequest added to complement the Figure 3-14.

2V2_048 5 - This chapter was removed.

Specification Document  Copyright 1999 - 2005 MOST Cooperation

 Page 15

MOST®
Specification

MOST Specification 05/2005

Changes MOST Specification 2V0-01 to MOST Specification 2V1-00

Change
Ref.

Section Changes

2V1_001 1 - Added paragraph introducing object oriented approach

2V1_002 2.3.2.2 - FBlockIDs “System Specific” and “Supplier Specific” added (WG-DA 2000-09-12)

2V1_003 2.3.2.4 - FktIDs “System Specific” and “Supplier Specific” added (WG-DA 2000-09-12)
- Handling of proprietary Functions/ Function Blocks by controller added

(WG-DA 2000-02-09)

2V1_004 2.3.2.2 - Speech output Device added (WG-DA 2000-09-12)
- Speech Database Device added (WG-DA 2000-09-12)
- Corrected FBlockIDs DAB Tuner (0x43) and TMCTuner (0x41)
- FBlock Satellite Radio (0x44) added
- FBlock HeadphoneAmplifier (0x23) added
- FBlock AuxiliaryInput added (0x24)
- FBlock MicrophoneInput added (0x26)
- FBlock (0x51) "Telephone mobile" replaced by "Phonebook"
- FBlock Router added (0x8) (WG-DA 2001-01-17)

2V1_005 2.3.2.5.1 - Specification of “Error Secondary node” revised
- Specification of “Error Device Malfunction” added (WG-DA 2000-05-04)
- Specification of “Segmentation Error” added (WG-DA 2000-09-12)
- Hint to avoiding “infinite loops” added
- "No error replies allowed in case of reception of broadcasted messages" added
- Specification of “ Error Method Aborted” added (WG-DA 2000-11-22)
- Added remark that methods in general should be aborted only by that application, which

has started the method.
- Code 0x05 and 0x06: Returning of the value of first incorrect parameter is optional

(WG-DA 2001-01-17).

2V1_006 2.3.2.5 - Renamed StartAck -> StartResultAck (0x6) and adapted every occurrence in
specification document.

- Added AbortAck (0x7)
- Added New StartAck (0x8)

2V1_007 2.3.2.5.4 - Added New StartAck (0x8)

2V1_008 2.3.2.5.11 - Added AbortAck (0x7)

2V1_009 2.3.2.6 - Maximum value for LENGTH changed to 65535

2V1_010 2.3.2.7 - Encoding of signed values added
- Codes for ISO 8859/15 8 bit and UTF8 added
- Maximum value for LENGTH changed to 65535
- Examples enhanced
- Data type Boolean revised
- Data type BitField added
- Description of String enhanced (Null Strings)

2V1_011 2.3.2.5.3 - Flow chart “Flow for handling communication of methods (controller’s side)”. Error
handling for “Timeout = YES” added

- Changing of timeout (100ms) for "PROCESSING"

2V1_012 2.3.11.1.2 - Specification of NSteps extended
- Units for Speed (m/s), Angle and Pixel added

2V1_013 2.3.11.1.4 - Interpretation of Increment and Decrement added

2V1_014 2.2.6 - Handling of dynamic changes of Function Interfaces through Notification added

2V1_015 General - MMI replaced by HMI (Human Machine Interface)

2V1_016 3.9 - Description of Secondary Node added

2V1_017 3.2.6.8 - Section completely removed, due to an overlapping with the MOST Function Catalog

2V1_018 3.2 - Generally revised

Specification Document  Copyright 1999 - 2005 MOST Cooperation
Page 16

MOST®
Specification

MOST Specification 05/2005

Change
Ref.

Section Changes

 3.2.2 - Figure 3-3 “Diagnosis Normal Shutdown” changed to “Diagnosis Ready”

 3.2.2.1 - Table 3-6 changed

 3.2.3.2 - “Network Slave” removed,
“Requesting System Configuration – Network Master” added

 3.2.3.3 - “Network Master” removed,
“Requesting System Configuration – Network Slave” added

2V1_019 3.2.4 - Dynamic Behavior of Secondary Nodes added

2V1_020 3.2.6.4 - "Failure Of A Function Block" added

2V1_021 3.8 - Timeout tRuntime added
- Timeout tCfgStatus changed
- Timeout tAnswer changed
- Timeout tDiag_Master changed
- Timeout tDiag_Slave changed

2V1_022 2.3.12 - Error handling in case of property failure added
- Notification of Function Interface (FI) added (WG-DA 2001-01-17)
- Error handling added, in case of values in property not yet available during subscription

(WG-DA 2001-01-17)

2V1_023 2.3.2.2 - Note about FBlockID 0xFF added

2V1_024 2.3.11.2.4.2 - Added parameters CurrentSize and AbsolutPosition to description of ArrayWindows
- Added PositionTag, and descriptions for PositionTag and WindowSize

(WG-DA 2001-01-17)

2V1_025 2.3.2.5.10 - Added remark that methods in general should be aborted only by that application, which
has started the method.

2V1_026 2.3.2.5.11 - Function Class BoolField added
- Function Class BitField added
- Description of parameter "OPType" enhanced

2V1_027 2.3.11.1 - Start of Ring Break Diagnosis revised

2V1_028 3.2.5.1 - Note about wakeup methods added

2V1_029 4.6, 4.7 - Voltage levels and Implementation of Power Supply Area are no longer normative.

2V1_030 General - Eithernet replaced by Ethernet

2V1_031 3.2.2.2 - Behavior of a waking Slave device (Figure 3-6)

2V1_032 3.5.3 - "MOST Asynchronous Medium Access Control (MAMAC)" added

2V1_033 3.4.3.3 - Equation for delay compensation revised (TSource < TNode)

2V1_034 4.2.4 - Hint Added. Description of pig tail is only one of the possible implementations.

2V1_035 3.4.1.1.2.1 - Method SourceActivity added

2V1_036 3.2.6 - General handling of errors. Synch. connections are removed in case of Fatal Errors.

Specification Document  Copyright 1999 - 2005 MOST Cooperation

 Page 17

MOST®
Specification

MOST Specification 05/2005

Changes MOST Specification 2V0-00 to MOST Specification 2V0-01

Change
Ref.

Section Changes

2V01_001 General Document no longer specified as “Confidential”; Legal Notice inserted.

Changes MOST Specification 1V0 to MOST Specification 2V0

Change
Ref.

Section Changes

2V0_001 3.3.1 Equation modified; Startup address 0xFFFF

2V0_002 2.1.2/ 2.2.5 Section 2.2.5 moved to 2.2.2

2V0_003 2.2.1 NetBlock “functions related to the entire device.”

2V0_004 2.3.2.2 Table 2-5: Proprietary FBlockIDs 0xF0..0xFE

2V0_005 2.3.2.3 Completely revised

2V0_006 2.3.2.4 Minor modification

2V0_007 2.3.2.5 Completely revised

2V0_008 2.3.2.6 Completely revised

2V0_009 2.3.2.7 Boolfield introduced; Definition of STRING expanded, Examples for Exponent, Step and Unit

2V0_010 2.3.5 Minor modification

2V0_011 2.3.6 Distinguishing Properties and Methods; Communication with routing revised

2V0_012 2.3.10 Transmitting function interfaces. Introduced.

2V0_013 2.3.11 Function Classes (completely revised)

2V0_014 2.3.12 Notification for array properties; Notification re-build at system start

2V0_015 3.2.2.2 Error_t_slave replaced by Error_NSInit_Timeout

2V0_016 3.2.2.3 Completely revised

2V0_017 3.2.2.4 Completely revised

2V0_018 3.2.3.2 Completely revised

2V0_019 3.2.3.2 Completely revised

2V0_020 3.2.5.1 Completely revised

2V0_021 3.2.6 General rules added

2V0_022 3.2.6.1 Completely revised

2V0_023 3.2.6 Completely revised

2V0_024 3.3.5.3 - Table 3-14;
- sample for receiving logical node address;
- section below Table 3-15

2V0_025 3.3.7.2 TelIDs for MOST High Protocol removed

2V0_026 3.3.8.1 Figure 3-25; Set STX bit added

2V0_027 3.4.1.1.1 Replaced “.0.” by “.Pos.”

2V0_028 3.4.1.1.2 Completely revised

2V0_029 3.4.3.3 Equations

2V0_030 3.5.2.1 TelID and TelLen changed; One ID reserved for Ethernet frames

2V0_031 3.7.1.1 Revised (OPTypes)

2V0_032 3.7.1.2 Revised (OPTypes)

2V0_033 3.7.1.3 Revised (OPTypes)

2V0_034 3.1.4.2 Table 3-1

2V0_035 3.1.4.2.2 Revised

2V0_036 3.1.4.3.1 Handling of Isochronous data removed

2V0_037 3.1.4.3.6 Table 3-2; Table 3-3 added, Handling of Isochronous data removed

Specification Document  Copyright 1999 - 2005 MOST Cooperation
Page 18

MOST®
Specification

MOST Specification 05/2005

Change
Ref.

Section Changes

2V0_038 3.1.4.4.2 Completely revised

2V0_039 4.1 Figure 4-1

2V0_040 4.2.1 Completely revised

2V0_041 4.2.2 Revised

2V0_042 4.2.4 Completely revised

2V0_043 4.3 Revised

2V0_044 4.5 Completely revised

2V0_045 4.6 Completely revised

2V0_046 4.7 Completely revised

2V0_047 --- General changes in Structure:
- Chapter 2.1 removed, contents included within 2.2.9
- Detailed descriptions of Control Channel (2.2) moved to 3.3
- Introduction of CMS/ AMS moved to 3.3.7
- Chapters 2.6 up to 2.12 moved to 3.2 up to 3.8
- Chapter 2.5 and 2.13 moved to Chapter 5

Specification Document  Copyright 1999 - 2005 MOST Cooperation

 Page 19

MOST®
Specification

MOST Specification 05/2005

1 Introduction

1.1 Purpose
The purpose of this documentation is to be part of the MOST (Media Oriented System Transport)
specification. This document is the main specification, which all other specifications relate to.

1.2 Scope
This document contains specification of the application layer, the network layer and the MOST
Hardware.

1.3 MOST Document Structure
This document structure reflects the documents published by the MOST Cooperation and their internal
dependencies. This structure is subject to changes as new documents are published.

MOST Specification

MOST Dynamic Specification

MOST FBLOCK APIs:
MOST Physical Layer
Specification

MAMAC
Specification

MOST High
Specification

MOST Framework

MOST Compliance Specifications:
MOST Core Compliance
Specification

MOST Electrical Physical
Layer Specification

MOST Guidelines:
MOST MSC CookBook

MOST FBLOCK APIs:

Other documents

Note1

Figure 1-1: MOST Document Structure

Note1: MOST FunctionBlocks API’s will also include the dynamic behavior. A restructuring taking this

into account is planned.

The MOST Specification is a main specification within the MOST Framework. The arrows show the
direction of references.

Specification Document  Copyright 1999 - 2005 MOST Cooperation
Page 20

MOST®
Specification

MOST Specification 05/2005

1.4 References
All documents within this MOST document have references to are listed here with the actual revision
this document is referring to.

Document Revision
- -
- -

Comment: The MOST Specification does not refer to other documents.

1.5 Overview
This specification consists of three sections namely the application section, the network section and
the hardware section. There are different possible physical layers described in respective
documentations. In those cases when optical physical layer is mentioned in this specification it has to
be seen as an example.

Specification Document  Copyright 1999 - 2005 MOST Cooperation

 Page 21

MOST®
Specification

MOST Specification 05/2005

2 Application Section

2.1 Overview of Data Channels

2.1.1 Control Channel

On the control channel, data packets are transported to certain addresses, as they are on the
asynchronous (packet) channel. Both channels are secured by CRC.

The control channel also has an ACK/NAK mechanism with automatic retry. It is generally specified
for event-oriented transmissions at low bandwidth and short packet length. It is usable for connections
with a bandwidth of approximately 10KBps, even for short periods of time.

In contrast to that, the asynchronous area is specified for transmissions requiring high bandwidth in a
burst-like manner.

2.1.2 Synchronous Channel

Continuous data streams that demand high bandwidth are transported over the synchronous
channels. The connections are administered dynamically via the control channel. No bandwidth is
reserved for special applications. Although synchronous connections can be built directly by source
and sink nodes, it is recommended that available bandwidth be administered in a central manner,
particularly in larger networks.

Administration of the synchronous resources is handled by the Connection Manager. Since the
Connection Manager must check to see if the connection already exists before it can be built, all
requests for establishing connections must be directed to the Connection Manager. The Connection
Manager may be controlled through FBlock Connection Master, but it may also be controlled in some
other way.

Specification Document  Copyright 1999 - 2005 MOST Cooperation
Page 22

MOST®
Specification

MOST Specification 05/2005

2.1.3 Asynchronous Channel

The asynchronous channel is mainly used for transmitting data with large block size and high demand
for bandwidth in a burst-like manner (graphics, some picture formats and navigation maps).

2.1.4 Managing Synch./Async. Bandwidth

On the MOST Network there are 60 Bytes available for synchronous and asynchronous data transfer.
It is possible to divide up these resources between synchronous and asynchronous channels by
means of a boundary descriptor. The boundary descriptor can be modified either by direct access to
the respective register in a MOST Network Interface Controller, or by the MOST Network Service.

The position of the boundary descriptor depends on the requirements of the system and can be
changed dynamically. Supervision and changing of the bandwidth or position of the boundary is done
in the Timing Master. The Timing Master is responsible for forwarding the information about the
boundary’s position to all nodes in the network. This task is handled automatically on the MOST
Network Interface Controller level. After having changed the boundary descriptor, the synchronous
connections must be re-built.

Specification Document  Copyright 1999 - 2005 MOST Cooperation

 Page 23

MOST®
Specification

MOST Specification 05/2005

2.2 Logical Device Model
The following sections describe different kinds of devices. A MOST device is a physical unit, which
can be connected to a MOST network via a MOST Network Interface Controller.

2.2.1 Function Block

On the application level, a MOST device contains multiple components, which are called function
blocks, e.g., tuner, amplifier, or CD player. It is possible that there are multiple function blocks in a
single MOST device, such as a tuner and an amplifier combined in one case and connected to the
MOST network via a common MOST Network Interface Controller. In addition to the function blocks,
which represent applications, each MOST device has a special function block called the NetBlock.
The NetBlock provides functions related to the entire device. Between the function blocks and the
MOST Network Interface Controller, Network Service forms an intermediate layer providing routines to
simplify the handling of the MOST Network Interface Controller.

MOST Device

Function
Block

NetBlock

Function
Block

Application
1

Function
Block

Application
2

Network Service

MOST Network Interface Controller

Physical Interface

Figure 2-1: Model of a MOST device

Each function block contains a number of single functions. For example, a CD player possesses
functions such as Play, Stop, Eject, and Time Played. To make a function accessible from outside,
the function block provides a function interface (FI), which represents the interface between the
function in a function block and its usage in another function block.

Function Block

FunctionFI

Function Block

Figure 2-2: Communication with a function via its function interface (FI)

Specification Document  Copyright 1999 - 2005 MOST Cooperation
Page 24

MOST®
Specification

MOST Specification 05/2005

2.2.1.1 Slave, Controller, HMI

There are three types of different function blocks. Function blocks that are always controlled are
called slaves. Function blocks that have an interface to the user are called Human Machine Interfaces
(HMIs). Function blocks using functions in other function blocks are called controllers. Controllers
themselves may also be controlled.

A clear separation between HMI, controller and slave cannot always be made in devices that have
many function blocks. Such devices can often be classified with respect to their primary function.

2.2.1.2 First Introduction to MOST Functions

This section gives a brief introduction to the structure of MOST functions, as this knowledge is
necessary to understand the following examples. Chapter 2.3 on page 38 explains the structure of
MOST functions in more detail.

On the application level, a function is addressed independently of the device it is in. Functions are
grouped together in function blocks with respect to their contents. Therefore, function blocks are good
references for external applications to localize a certain function. A function is addressed in a function
block. In order to distinguish between the different function blocks (FBlocks) and functions (Fkt) of a
device, each function and function block has an identifier (ID):

FBlockID . FktID

When accessing functions, certain operations are applied to the respective property or method. The
kind of operation is specified by the OPType. The parameters of the operation follow the OPType,
resulting in the following structure:

FBlockID . FktID . OPType (Data)

Specification Document  Copyright 1999 - 2005 MOST Cooperation

 Page 25

MOST®
Specification

MOST Specification 05/2005

2.2.2 Functions

A function is a defined property of a function block that can communicate with the external world,
through the borders of its function block. Functions can be subdivided into two classes:

• Functions that can be started and which lead to a result after a definable period of time. This
class is called “methods”.

• Functions for determining or changing the status of a device, which refer to the current
properties of a device. This class is called “properties”.

In addition to that, there are also events. Events result from properties, if the properties are requested
to report changes (Notification).

Function Block

Method

Property/Event

Figure 2-3: Structure of a function block consisting of functions classifiable as methods, properties and events

2.2.3 Methods

Methods can be used to control function blocks. They are transmitted in the same way as properties.
In general, a method is triggered only once, for example, starting the auto-scanning of a tuner. So
method “auto-scan” is started without parameters. Of course, it is possible to use parameters, e.g., to
specify the direction of auto-scan. Then only one method is needed for tune up and tune down.
Especially in the case of tuners that possess automatic frequency optimization (RDS) it may be useful
to specify the starting frequency for the scanning process as an additional parameter, since the
currently displayed frequency may no longer meet the frequency the receiver is tuned to. So a
method’s call may contain one or more parameters.

After the reception of a method called by a function block, the respective process must be started. If
this is not possible, the function block has to return the respective error message to the sender of the
method call. This may happen if the addressed function block has no method of that kind, if a wrong
parameter was found, or if the current status of the function block prevents the execution of the
method.

After finishing the process, the controlled function block should report execution to the controlling
function block (in a control device). This report may contain results of the process, for example, a
frequency found by the tuner. If a process runs for a long time, it may be useful to return intermediate
results before finishing, such as informing the controlling function block about the successful start of
the process.

Specification Document  Copyright 1999 - 2005 MOST Cooperation
Page 26

MOST®
Specification

MOST Specification 05/2005

For executing methods, the following kinds of messages are exchanged via the bus:

Controller Slave
Start of a Method with Parameters (Start/StartResult) Error with cause for error (Error)

Execution report with results (Result)
Intermediate result (Processing)

The respective MOST functions needed for this messaging are described in depth in chapter 2.3 on
page 38.

2.2.4 Properties

Properties can be read (e.g., temperature), written (e.g., passwords), or read and written (e.g., desired
value for speed control). For each property the allowed operations are specified.

Within a function block, a property is normally represented by a variable that represents something
such as a limit, or a status.

2.2.4.1 Setting a Property

The process of setting a property is described by the example of the temperature setting of a heating
control.

Heating Control Heating

Property

Temp : 27

FI
Temp : Byte
Min : -40
Max : 80

Heating.Temp.Set(27)

Figure 2-4: Setting a property (temperature setting of a heating)

Function Temp is a member of the function block Heating, so the HMI sends the instruction
Heating.Temp.Set(27) to function block Heating.

Specification Document  Copyright 1999 - 2005 MOST Cooperation

 Page 27

MOST®
Specification

MOST Specification 05/2005

2.2.4.2 Reading a Property

In order for the HMI to display the current temperature, the value of function Temp in function block
Heating must be read. Therefore the HMI sends the instruction Heating.Temp.Get.

HeatingHeating Control

FI
Temp : Byte
Min : -40
Max : 80

Property

Temp : 27Heating.Temp.Get

Figure 2-5: Reading a property (temperature setting of a heating)

Heating replies by sending the status message Heating.Temp.Status(27).

HeatingHeating Control

FI
Temp : Byte
Min : -40
Max : 80

Property

Temp : 27Heating.Temp.Status(27)

Figure 2-6: Status report of property temperature setting

For changing and reading of properties, the following types of messages are exchanged via the bus:

Controller Slave
Setting a property (Set/SetGet)

Reading a property (Get)

Incrementing / decrementing a property

Status of property (Status)

Error message with cause of error (Error)

The MOST functions needed for this messaging are described in depth in chapter 2.3 on page 38.

2.2.5 Events

Properties of a function block may change without an external influence, e.g., the temperature in the
example above, or the current time of a CD player. To display current values using the functions
described up to now, a cyclical reading of the properties (polling) would be required.

To reduce communication between function blocks, it would be useful if function blocks could send
status reports about changes in properties without explicit requests. These are events that occur in a
controlled function block, which initiate the sending of a report (notification).

Specification Document  Copyright 1999 - 2005 MOST Cooperation
Page 28

MOST®
Specification

MOST Specification 05/2005

Events can be used to notify reaching of limits, or the change of measured values in function blocks
(e.g., the play time of a CD player has changed), or in the HMI (e.g., reception of a new value of
mileage received via a CAN gateway). Events are sent only to those function blocks that have
requested it by an entry in the notification matrix (refer to chapter 2.3.12 on page 107). The respective
data should be transmitted in the same message with events.

2.2.6 Function Interfaces

A function interface (FI) represents the interface between a function in a function block, and its use in
another function block.

To communicate with a function, a controller or an HMI needs information about the available
parameters, their limits, and the allowed operations (=FI).

In general, this information is available in the control device, and is encoded in the control program.
The FI was passed on, e.g., like a device specification. To simplify the exchange of FIs, especially
between different manufacturers, a formal description may be used that can be exchanged between
the developers of slaves and controllers, like the well-known header files in the programming language
C.

The contents of the FIs are usually known during implementation of a device (well known functions). It
is also possible that FIs are transported on the bus during runtime, making it possible to dynamically
reconfigure a HMI. In this way, even functions that did not exist during the development of a HMI can
be made available.

Example:

Heating Control Heating

Property

Temp : 27

FI
Temp : Byte
Min : -40
Max : 80

Heating.Temp.Set(27)

Figure 2-7: Example for a function interface (FI)

In this example the FI contains information about the data type of the function and about minimum and
maximum value. In real implementations, a FI contains much more information.

During operation it is possible that a FI changes dynamically. In that case, all the function blocks that
have subscribed for notification, will get the new interface description through the notification
mechanism. For more information about notification, please refer to section 2.3.12 on page 107.

Specification Document  Copyright 1999 - 2005 MOST Cooperation

 Page 29

MOST®
Specification

MOST Specification 05/2005

2.2.7 Definition Example

This section contains the example of a formal definition of a MOST device, MyTuner, its function
blocks and their methods and properties.

MyTuner = Device
 Tuner : TTuner;
 NetBlock : TNetBlock;
 end;

Device
 {
 TTuner Tuner;
 TNetBlock NetBlock;
 } MyTuner

(Pascal Syntax) (C Syntax)

The definition specifies that MyTuner contains a function block Tuner of type TTuner, and a function
block NetBlock of type TNetBlock.

TTuner is a function block and can be defined in the following way:

TTuner = Object
 pStation : TStation;
 eTraffic : TTraffic;
 pSensitivity: TSensitivity;
 mSearch : TSearch;
 end;

Object
 {
 TStation pStation;
 TTraffic eTraffic;
 TSensitivity pSensitivity;
 TSearch mSearch;
 } TTuner

Here it is defined that function block TTuner contains the functions pStation (currently tuned station),
pSensitivity, and mSearch (auto scan). In addition to that, the event eTraffic can be generated.

The type of function can be indicated by its name, by adding a special character to the beginning of
the name (p = property, m = method, e = event).

Now property pStation will be defined as follows:

TStation = Property
 Frequency : Long;
 TP : Bool;
 Quality : Byte;
 end;

Property
 {
 long Frequency;
 Bool TP;
 Byte Quality;
 } TStation;

This describes pStation as a property with the parameters Frequency, TP, and Quality.

Now method mSearch will be defined:

TSearch = Method
 Up : Bool;
 Start : Long;
 end;

Method
 {
 Bool Up;
 Long Start;
} Tsearch;

Method mSearch can be started with the parameters Up for direction and Start for the start frequency.

Specification Document  Copyright 1999 - 2005 MOST Cooperation
Page 30

MOST®
Specification

MOST Specification 05/2005

And last, the definition of event eTraffic:

TTraffic = Event
 TA : Bool;
 end;

Event
 {
 Bool TA;
} TTraffic;

This definition specifies that event eTraffic has a Boolean parameter TA (traffic announcement).

The FI of property pStation could be defined as follows:

iStation = Interface
 iFrequency,
 iTP
 iQuality
 end

Here is the example for the interface description of parameter Frequency.

iFrequency = Interface
 Type : Tlong;
 Min : 87500
 Max : 108000
 Unit : TKHz
 end

The interface description of property TStation, consisting of interface definitions for the parameters
Frequency, TP, and Quality, can be available as part of the device specification and can be regarded
as a well-known function. It can also be requested by the control device and sent to it encoded in a
suitable form.

Specification Document  Copyright 1999 - 2005 MOST Cooperation

 Page 31

MOST®
Specification

MOST Specification 05/2005

2.2.8 MOST Network Service

The MOST Network Service provides all the basic functionality to operate a MOST system. It contains
a comprehensive library of API functions to interface with the hardware and simplify use of MOST for
the application.
The MOST Network Service offers a wide variety of functions for implementing applications. Some
functions or properties are mandatory for a MOST device. MOST devices should be able to handle
control tasks in a peer-to-peer manner. To provide flexibility in control tasks, MOST devices must be
able to work in an environment with multiple masters.
MOST Network Service provides a basic framework for a MOST device.

Network Service API

NetBlock NetworkMaster
Shadow

Address Handler
Decentral Registry

MOST
Supervisor

Layer 2

Notification
Service

MOST Command Interpreter

A
pp

lic
at

io
n

M
es

sa
ge

 S
er

vi
ce

Sy
nc

hr
on

ou
s

D
at

a
Tr

an
sm

is
si

on
 S

er
vi

ce

Control Message Service

A
sy

nc
hr

on
ou

s
D

at
a

Tr
an

sm
is

si
on

 S
er

vi
ce

M
O

S
T

N
et

w
or

k
In

te
rfa

ce
 C

on
tro

l S
er

vi
ce

MOST Supervisor

Low Level Driver

Low Level System Services

Physical Interface: Media and Connectors

N
et

w
or

k
S

er
vi

ce

Figure 2-8: MOST Network Service

Specification Document  Copyright 1999 - 2005 MOST Cooperation
Page 32

MOST®
Specification

MOST Specification 05/2005

2.2.9 Delegation, Heredity, Device Hierarchy

2.2.9.1 Delegation

The principle of delegation provides the combining of functions of several devices to higher, distributed
functions. By combining tasks and by simplifying presentation in the direction to upper layers, device
hierarchies are built, which allow higher-level software to structure and control even complex system
contexts in a clear way. The following example illustrates delegation.

Although car audio systems today consist of many single components, an ideal audio system would
look like the one shown below, from the view of a HMI:

HMI Audio System

Figure 2-9: Ideal audio system

Real audio systems generally look like this:

HMI

CD Changer

Tuner

Amplifier

Figure 2-10: Real audio system

Coordination of the complex interaction of these components must normally be done by the HMI. This
makes the design of the HMI complex and vulnerable to design changes. In addition to that,
coordination of audio components requires detailed knowledge of a special range of problems. This
also applies to other subsystems such as video, communication, and vehicle-based functions.

Specification Document  Copyright 1999 - 2005 MOST Cooperation

 Page 33

MOST®
Specification

MOST Specification 05/2005

The goal of delegation is to present the audio components as one single component providing audio
functions. This delegation can be related only to the direct audio area, and not to all devices having
audio functionality like a navigation system or a telephone. If the audio controller were to take over
complete control of these other devices, it would lead to unnecessary dependencies, making the
system inflexible.

Audio System

Audio
Controller

CD Changer

Tuner

Amplifier

HMI

Figure 2-11: Delegation of functions of all audio components to one audio controller

By defining an audio controller, all audio functions can be provided by a single hand, even if the
components are distributed. The audio controller coordinates the audio components in this case. The
audio controller does not need to be a real physical device in the ring; it can be part of another device.
It could even be a software module in the HMI.

Specification Document  Copyright 1999 - 2005 MOST Cooperation
Page 34

MOST®
Specification

MOST Specification 05/2005

The mechanism of delegation of functions is explained below by the example of a traffic
announcement. The tuner device has the possibility to detect traffic announcements (TA). For a TA
to be faded in during CD player plays, some steps must be taken.

Before the announcement:
Set the CD to pause, connect the amplifier to the tuner’s channels (eventually send special values for
volume and sound).

After announcement:
CD back to play, amplifier back to CD, restore Volume and sound.

The sequence and the timing of these operations must be done precisely, to avoid unpleasant effects
for the listener. In order to keep the design of the HMI simple, these operations can be handled by a
special unit, the audio controller. With this controller, a distributed higher TA function is built. The
audio controller can provide a TP on/off, although the tuner has no such function. The interface to the
HMI is represented by two simple functions TA and TP. This shows how control can be simplified by
building hierarchies.

2.2.9.2 Heredity of Functions

The example above also shows a second mechanism - the heredity of functions. The audio controller
receives function TA from the tuner and hands it through to the HMI in a modified form. The TA
function of the tuner is complemented by an on/off function. TA information is only passed to the HMI
in case of TP = ON.

Specification Document  Copyright 1999 - 2005 MOST Cooperation

 Page 35

MOST®
Specification

MOST Specification 05/2005

2.2.9.3 Deriving Devices / Device Hierarchy

The principle of deriving provides a system of order, where complex devices can be derived from
simpler devices. The parent node provides functions and properties to all child nodes (parent is that
node from which properties are inherited, while child nodes are those which inherit). In complex
devices, this heredity can also be found in a respective hierarchy of classes. All devices in lower
hierarchical devices (derived devices) contain all of the functions and properties of higher device
classes (mandatory functions). These functions and properties can be taken from them or can be
modified. Additional properties and functions can also be defined for these objects. A kind of
“constructional toy” principle is generated, where complex structures are built from simpler ones.

In the figure below, the upper layer of the device hierarchy is displayed. All “intelligent” MOST devices
are derived from MOST device and from NetBlock. This means they contain their entire functionality
(e.g., a MOST Network Interface Controller with the properties NodeAddr and LogicalAddr) and must
support all methods and properties of NetBlock and MOST device. In addition to that, their own
methods and properties are added.

NetBlock

FBlockIDs()
DeviceInf()

MostDevice
NodeAddr
LogicalAddr

IntelligentMostDevice

FktIDs()
Notification()

SynchronousSource

Allocate()
DeAllocate()
Mute()

SynchronousSink

Connect()
Disconnect()

Top Level Device Model
(Control View)

Alle Methoden in diesen Klassen
sind "Verpflichtende Methoden"
für abgeleitete Devices.

Figure 2-12: Highest layer of the device model

All methods in these classes are
“mandatory methods” for derived
devices.

Specification Document  Copyright 1999 - 2005 MOST Cooperation
Page 36

MOST®
Specification

MOST Specification 05/2005

IntelligentMostDevice

FktIDs()
Notification()

SynchronousSource

Allocate()
DeAllocate()
Mute()

Device Model Synchronous Sources and Players
(Control View)

Player

Play()
Stop()
Next()
Prev()

CdPlayer DvdPlayer SoundGenerator

StopAudioPattern()

Figure 2-13: Device model for audio sources with player function

In addition to the inherited functions, the players can have their own methods and properties; for
example, StopAudioPattern in the class SoundGenerator.

An application for derived devices is the designing of function or telegram catalogs for individual
devices. As shown in the following table, deriving avoids re-defining all functions of the CD changer
(CDMulti). They can be derived mostly from simple drives.

Device Group of Functions

Master MOST Network

Interface Controller
+ NetBlock Master

Slaves % + NetBlock Slave
All drives % % + Basic drive
CDSingle % % % + CD-Functions
CDMulti % % % % + Changer

Table 2-1: Application example for the principle of derived devices

Specification Document  Copyright 1999 - 2005 MOST Cooperation

 Page 37

MOST®
Specification

MOST Specification 05/2005

Figure 2-14: Device model for audio sources without player function

IntelligentMostDevice

FktIDs()
Notification()

Navigation

CalcRoute()
SetupOptimize()

Tuner

TuneUp()
TuneDown()

Device Model Synchronous Sources
(Control View)

SynchronousSource

Allocate()
DeAllocate()
Mute()

Phone

OffHook()
HangUp()
ExternalCall()

Specification Document  Copyright 1999 - 2005 MOST Cooperation
Page 38

MOST®
Specification

MOST Specification 05/2005

2.3 Protocols

2.3.1 Protocol Basics

As already described in section 2.2.1.2 on page 24, functions are addressed without considering the
devices they belong to (on the application level). Functions are grouped together in function blocks
with respect to their contents. This makes function blocks to a good reference for localizing a certain
function for an external application. A function is addressed in a function block. To distinguish
between the different function blocks (FBlocks) and functions (Fkt) of a device, each function and
function block has a name, or an identifier (ID) respectively:

FBlockID . FktID

When accessing functions, certain operations are applied to the respective property or method. The
kind of operation is specified by the OPType, followed by the parameters of the operation. This results
in this structure:

FBlockID . FktID . OPType (Data)

2.3.2 Structure of MOST Protocols

The principal structure of protocols on the application layer is:

DeviceID . FBlockID . InstID . FktID . OPType . Length (Data)

In addition to section 2.2.1.2 on page 24, three components were added: InstID, Length and
DeviceID. The individual elements are explained below.

2.3.2.1 DeviceID

The DeviceID stands for a physical device, or a group of devices in the network (ID is network specific
and has a length of 16 bits). It precedes the protocol, and does not need to be interpreted on the
application level.

If a function receives a protocol, the DeviceID contains the logical node address of the sender
(DeviceID = TxAdr = TxLog). In case of an answer, it precedes the protocol as the receiver’s address
(DeviceID = RxAdr = RxLog). Here a group address (DeviceID = RxAdr = GroupAddress), or the
broadcast address (DeviceID = RxAdr = 0x03C8) could be used too.

If the sender does not know the receiver’s address, the DeviceID is set to 0xFFFF. In that case, it is
corrected by the Network Service.

Specification Document  Copyright 1999 - 2005 MOST Cooperation

 Page 39

MOST®
Specification

MOST Specification 05/2005

2.3.2.2 FBlockID

The FBlockID is the name of a special function block. Every function block with a special FBlockID
must contain certain specific functions. In addition to those mandatory functions, it can contain other
functions. There are “System Specific” proprietary FBlockIDs, which can be used by any System
Integrator (car maker). They are specific for a system and are coordinated between the OEMs
developing devices for this system. A second kind of proprietary FBlockIDs is called “Supplier
Specific”. Those FBlockIDs can be used by OEMs e.g., for development purpose. The special
FBlockID 0xFF addresses all function blocks within a MOST device, except the NetBlock. Since this
can be regarded as a broadcast function, no error status messages should be returned.

The table below shows a (incomplete) collection of FBlockIDs:

Kind FBlockID 8 Bit Name Explanation
Administration 0x0x
 0x00 Network Service Telegrams that are related to

network tasks are sent and received
here. They are not passed to the
application.

 0x01 NetBlock Mandatory for each device.
 0x02 NetworkMaster Mandatory for each system.
 0x03 ConnectionMaster Mandatory for each system .
 0x04 PowerMaster
 0x05 Vehicle
 0x06 Diagnosis

 0x08 Router

 0x0F EnhancedTestability Mandatory for each device

Operation 0x1x
 0x10 Human Machine Interface (HMI)
 0x11 Speech Recognition
 0x12 Speech Output Device
 0x13 Speech Database Device

Audio 0x2x
 0x20 Audio Master
 0x21 Audio DSP
 0x22 Audio Amplifier
 0x23 HeadphoneAmplifier
 0x24 AuxiliaryInput
 0x26 MicrophoneInput
 0x28 Handsfree Processor

Drives 0x3x
 0x30 Audio Tape Recorder
 0x31 Audio Disk Player
 0x32 ROM Disk Player
 0x33 Multimedia Disk Player
 0x34 DVD Video Player

Table 2-2: FBlockIDs (part 1)

Note: 0x0F is mandatory for each device due to compliance reasons.

Specification Document  Copyright 1999 - 2005 MOST Cooperation
Page 40

MOST®
Specification

MOST Specification 05/2005

Kind FBlockID 8 Bit Name Explanation
Receiver 0x4x
 0x40 AM/FM Tuner
 0x41 TMCTuner
 0x42 TV Tuner
 0x43 DAB Tuner
 0x44 Satellite Radio

Communication 0x5x
 0x50 Telephone
 0x51 Phonebook
 0x52 Navigation System
 0x53 TMC Decoder
 0x54 Bluetooth

Video 0x6x
 0x60 Display
 0x61 Camera
 0x62 Video Tape Recorder

Proprietary
 0xC0…C7 System Specific
 0xC8 Reserved
 0xC9...0xEF System Specific
 0xF0...0xFE Supplier Specific
 0xFC Secondary Node
 0xFE Reserved
 0xFF All

Table 2-3: FBlockIDs (part 2)

System Specific FBlockIDs (0xC0...0xC7, and 0xC9...0xEF) can be used by any System Integrator
(car maker). They are specific for a system and are coordinated between the OEMs developing
devices for this system. Supplier Specific FBlockIDs (0xF0...0xFE) can be used by OEMs e.g., for
development purpose.

Specification Document  Copyright 1999 - 2005 MOST Cooperation

 Page 41

MOST®
Specification

MOST Specification 05/2005

2.3.2.3 InstID

There may be several equal1 function blocks (Instances) with the same FBlockID in the system (two
CD changers, four active speakers, several diagnosis blocks, etc.). In order to address these function
blocks unambiguously, the FBlockID is complemented by an eight-bit instance identification number
(InstID). The combination of FBlockIDs and InstID is referred to as the functional address.

2.3.2.3.1 Responsibility

Each device is responsible for the uniqueness of functional addresses within the device. The Network
Master is responsible for the uniqueness of functional addresses within the entire system. Refer to
section 3.3.3.

2.3.2.3.2 Assigning InstID

By default, every function block has InstID 0x01. In case there are several function blocks of the same
kind within one MOST device, the default numbering within the device starts at 0x01 and is then
incremented. In principle, as long as the InstID provides the possibility to differentiate between equal
function blocks, the InstID can be chosen in any way. For example, in static systems the system
integrator may choose to use hard coded InstIDs or set the InstIDs depending on certain ranges with
respect to the supported functions of the function block. Note: Wildcard must not be used for InstID
assignment.

2.3.2.3.3 InstID of NetBlock

InstIDs of NetBlocks are derived from the node position address of the MOST device. Therefore, they
start counting at 0x00.

2.3.2.3.4 InstID of NetworkMaster

InstID of Network Master may be zero; default value is 0x01. Requests to NetworkMaster shall be sent
to InstID 0x00 (wildcard ref 2.3.2.3.6).

2.3.2.3.5 InstID of Function Block EnhancedTestability

InstIDs of function block EnhancedTestability are derived from the node position address of the MOST
device. Therefore, they start counting at 0x00.

1 The expression “equal” means that those function blocks have the same functionality (e.g., two CD
drives). This means that the basic functions are equal, but there is the possibility that they differ with
respect to the total functionality (e.g., CD drive with, or without random play).

Specification Document  Copyright 1999 - 2005 MOST Cooperation
Page 42

MOST®
Specification

MOST Specification 05/2005

2.3.2.3.6 InstID Wildcards

There are some special InstID values (wildcards) that can be used when addressing FBlocks. They
will be treated as follows:

0x00 Don't care (within a Device). The Device dispatches the message to one specific function

block in the device.

0xFF Broadcast (within a Device). The message is dispatched to all instances of the matching

function block.

Wildcards may not be used when replying to a request. In this case the correct InstID of the
respective function block has to be used.

2.3.2.4 FktID

The FktID stands for a function. This means a function unit (Object) within a device, which provides
operations that can be called via the network. Examples for functions are: play of a drive, speed limit
in an on-board computer, etc. On network level, the FktID is encoded in 12 bits, so 4096 different
methods and properties can be encoded per function block. On the application level, the FktID is
extended to 2 Bytes. Exceptions to this rule will be explicitly marked.

The address range of FktIDs is subdivided in the following sections:

1. Coordination (0x000...0x1FF)
Functions for administrative purposes in a function block.

2. Mandatory (0x200...0x3FF)

Functions that are mandatory for the application of the function block, like the basic drive in
all function blocks describing drives.

3. Extensions (0x400...0x9FF)

Optional functions.

4. Unique (0xA00...0xBFF)

Functions that are defined unambiguously in the entire system.
Attention, these must be coordinated with the entire system!

5. Proprietary / System Specific (0xC00...0xEFF)

Functions, which can be used by any System Integrator (car maker). They are specific
for a system and are coordinated between the OEMs developing devices for this system.

6. Proprietary/ Supplier Specific (0xF00...0xFFE)

Functions, which can be used by OEMs e.g., for development purpose.

Specification Document  Copyright 1999 - 2005 MOST Cooperation

 Page 43

MOST®
Specification

MOST Specification 05/2005

Some FktIDs in a function block that contains an application are predefined:

0x000 FktIDs Reports the FktIDs of all functions contained in the FBlock

(refer to section 2.3.9 on page 75).
0x001 Notification Distribution list for events (refer to section 2.3.12 on page

107).
0x002 NotificationCheck Check whether the distribution list for events is still as it
 should be.

When developing proprietary Function Blocks, all possible Function IDs can be used freely, except
those taken from the ranges:

Unique

Coordination

In case proprietary Function Blocks contain functions within the ranges Unique or Coordination, those
functions must be in accordance to MOST FBlock Specifications.

Please note:
Before using any proprietary Function or proprietary Function Block, a controller must verify
the identity of the device. This can be done e.g., by reading the DeviceInfo property.

Specification Document  Copyright 1999 - 2005 MOST Cooperation
Page 44

MOST®
Specification

MOST Specification 05/2005

2.3.2.5 OPType

This field stands for the operation which must be applied to the property or method specified in FktID:

OPType For Properties For Methods
Commands:

0 Set Start
1 Get Abort
2 SetGet StartResult
3 Increment Reserved
4 Decrement Reserved
5 GetInterface GetInterface
6 Locked for definitions StartResultAck
7 Locked for definitions AbortAck
8 Locked for definitions StartAck

Reports:
9 ErrorAck ErrorAck
A Locked for definitions ProcessingAck
B Reserved Processing
C Status Result
D Locked for definitions ResultAck
E Interface Interface
F Error Error

Table 2-4: OPTypes for properties and methods

Specification Document  Copyright 1999 - 2005 MOST Cooperation

 Page 45

MOST®
Specification

MOST Specification 05/2005

2.3.2.5.1 Error

Error is reported only to the controller that has sent the instruction. On Error, an error code is reported
in the data field (Data[0]), along with additional information as shown in Table 2-5 and Table 2-6.

ErrorCode
Data[0]
on ErrorAck
Data[2]

ErrorCode Description ErrorInfo
Data[1]..Data[n]
on ErrorAck
Data[3]..Data[n]

ErrorInfo Description

0x01 FBlockID not available -- No Info
0x02 InstID not available -- No Info
0x03 FktID not available -- No Info
0x04 OPType not available Return OPType Invalid OPType
0x05 Invalid length -- No Info
0x06 Parameter wrong / out of range

One or more of the parameters were wrong, i.e. not
within the boundaries specified for the function.

Example: Function Temp shall be set to 200, although
maximum value is 80.

Return Parameter Number of Parameter (Byte
containing 1,2...). Value of
first incorrect parameter
only (optional).
Interpretation will be
stopped then.

0x07 Parameter not available
One or more of the parameters were within the
boundaries specified for the function, but are not
available at that time.

Example: Function SourceHandles is asked for handle
0x03, which is not in use in the device at that time.

Return Parameter Number of Parameter (Byte
containing 1,2...). Value of
first incorrect parameter
only (optional).
Interpretation will be
stopped then.

0x08 Reserved. Usage deprecated -- No Info
0x09 Reserved. Usage deprecated -- No Info
0x0A Secondary Node Return Address

of Primary
Address of that node which
is responsible for the
secondary node sending
the error

0x0B Device Malfunction -- No Info
0x0C Segmentation Error

After this error code, the following ErrorInfo 0x01 up to

0x01

First segment missing

 0x07 can be sent. 0x02 Target device does not
provide enough buffers to
handle a message of this
size

 0x03 Unexpected segment
number

 0x04 Too many unfinished
segmentation messages
pending.

 0x05 Timeout while waiting for
next segment

 0x06 Device not capable to
handle segmented
messages

 0x07 Segmented message has
not been finished before the
arrival of another message
sent by the same node

 0x08 Reserved, must not be
used

Table 2-5: Error codes and additional information (part 1)

Specification Document  Copyright 1999 - 2005 MOST Cooperation
Page 46

MOST®
Specification

MOST Specification 05/2005

ErrorCode
Data[0]
on ErrorAck
Data[2]

ErrorCode Description ErrorInfo
Data[1]..Data[n]
on ErrorAck
Data[3]..Data[n]

ErrorInfo Description

0x20 Function specific
After this error code, any function specific ErrorInfo can

0x01

Buffer overflow

 be sent. Some, with general character, are suggested 0x02 List overflow
 here. 0x03 Element overflow
 0x04 Value not available

0x40 Busy

Function is available, but is busy
-- No Info

0x41 Not available
Function is implemented in principle, but is not available
at the moment

-- No Info

0x42 Processing Error -- No Info
0x43 Method Aborted

This error code can be used to indicate, that a method
has been aborted by the Abort / AbortAck OPTypes

-- No Info

0xF0...0xFE Supplier specific
After this error code, any supplier specific ErrorInfo can
be sent.

Optional Supplier specific ErrorInfo.

Table 2-6: Error codes and additional information (part 2)

Please note:
The error messages described here, mainly serve the purpose of debugging. They should be
handled in a controller only, if the system’s performance requires it. Otherwise error
processing should be omitted, and the devices should be designed as failure tolerant systems.
With respect to that, the slaves also should manage with the existing error messages.
Individual error messages using error code 0x20 should be avoided if possible.

Please note:
For avoiding infinite loops with respect to reporting errors, errors are reported only from Slave
to controller. In addition, no reply of error messages is allowed on reception of broadcast
messages.

CAN systems often define a dedicated error value (e.g., 0xFF) for signals to indicate the failure of the
sensor that provides the respective signal. If such a signal is read, function Sensor would report the
error “Not available” (0x41). If the sensor fails, and the function has an implemented notification
mechanism, the error is distributed to the registered controllers.

By OPType Error, different kinds of errors are reported. Incoming messages are scanned for all these
errors:

1) Syntax Error:
A syntax error occurs, if e.g., a function is accessed that does not exist, or if a not implemented
OPType is called. Syntax errors are reported by the ErrorCodes 0x01..0x04. A syntax error will be
reported directly after reception of a faulty command. This also applies to methods, which will not be
started in that case. A slave must report ErrorCode 0x01 with requested FBlockID, which is not
available. ErrorCode 0x02 must be reported if requested InstID is not available.
Example for requesting a non-existing FBlock:

SrcAdr -> TrgAdr:
FBlockID.InstID.FktID.OpType(...)
//if FBlock not available:
TrgAdr -> SrcAdr:
FBlockID.InstID.FktID.Error(errorcode = 0x01)

Specification Document  Copyright 1999 - 2005 MOST Cooperation

 Page 47

MOST®
Specification

MOST Specification 05/2005

2) Application Error – Parameter Error:
The specified length does not match the actual length of the data field. There have been not enough,
too many parameters, or one parameter is out of range. Parameter errors are reported by the
ErrorCodes 0x05 and 0x06. Messages are only accepted when being completely correct. This means
especially, that the length of the parameter area must be correct. The only exception is the handling
of arrays that are too short (refer to section 2.3.11.2 on page 89).

3) Application Error – Temporarily not Available:
In some cases it may happen, that the message is correct, but the execution is not possible at the
moment. The following distinction of cases must be performed:

• It may be that both methods and properties are implemented, but cannot be executed due to

operation status. An example for a method would be SMSSend of the telephone, which cannot be
executed if the bus is not available. In case of being called anyhow, it would report an OPType
error at error code 0x41 “not available”. In such a case, the application can supervise the status of
the telephone and may repeat the sending of the SMS as soon as the network is available again.

• A method can be available, but may be busy at the moment. So it would be possible, that method

SMSSend of the telephone is busy in sending another SMS. In that case an error code 0x40
“busy” would be reported. Here, the application may perform retries. This case can only occur in
connection with methods.

• A property represents a memory area, which is written by Set, or read by Get. According to

definition this memory area cannot be “busy”. It is solely possible that a value is within the valid
range, but is not selectable at the moment. An example can be property DeckStatus of the CD
drive, which cannot be set to “Play” if there is no CD loaded. This would generate an error code
0x07 “parameter not available”.

4) Application Error – General Execution Error:
Especially when using methods, execution errors may occur. In general, such an error (unspecific;
Command was correct, but execution failed) may be reported by error code 0x42 “processing error”.

5) Application Error – Specific Execution Error:
Besides the already listed errors, a MOST application may report specific errors during execution by
using OPType Error as well. Here, error code 0x20 “function specific” is used. Some possible errors
are predefined for that case as well.

The examination and processing of errors is done in the logical and temporary sequence as described
above and in Figure 2-15 on page 49.

Specification Document  Copyright 1999 - 2005 MOST Cooperation
Page 48

MOST®
Specification

MOST Specification 05/2005

6) Application Error – Error Secondary Node:
Detailed information about Secondary Nodes is to be found in section 3.10 on page 200. In case a
secondary node receives any control message, the requested FBlock replies with an Error „secondary
node“ (ErrorCode=0x0A). The reply contains the address of the primary node (=ErrorInfo), which is
responsible for that secondary node. A secondary node must report ErrorCode 0x0A with requested
FBlockID, InstID and FktID, which are not available.
Example for requesting a secondary node:

SrcAdr -> TrgAdr:
FBlockID.InstID.FktID.OpType(...)
//if TrgAdr is secondary node
TrgAdr -> SrcAdr:
FBlockID.InstID.FktID.Error(errorcode = 0x0A, errorinfo =_)

7) Application Error – Device Malfunction:
This error indicates device malfunction and provides to distinguish between a generally broken device,
and a temporarily being unavailable of a Device.

8) Application Error – Segmentation Error:
A MOST System provides the option of transporting messages that exceed the length limitations given
by the control channel of the MOST bus (17 Bytes). This is done by dividing the message up into
several segments. Each of the segments is then transported as one control channel telegram to the
receiver. In order to make sure that the data can be reassembled safely on the receiver's side, each
telegram carries the appropriate additional information in its protocol header (TelID, Segment counter).

Errors during reassembling the original message in the receiver can be caused e.g., by missing
segments, wrong order of arrival or exceeding the timeout between two segments. In case of such an
error, the parts of the message that have already been received are discarded. In addition, the
application within the receiver is notified of the error by the Network Service.

The segmentation error notifies the sender about the failure of the segmented transfer. Therefore, the
sender’s application may react in appropriate way, e.g., by retrying to send the same message again.
The reaction depends on the respective problem that caused the error.

Segmentation Error shall be sent back to a controller that failed to send a segmented message to a
Slave. Error messages can only be directed from the Slave to the controller, to avoid infinite loops of
error messages. So a failure in sending a segmented message from the Slave to the controller will not
be notified to the Slave. In this case, it is the responsibility of the controller application to take
appropriate measures, as soon as it is notified about the error by the callback function mentioned
above.

Since the segment containing the sender handle in case of an Ack method may be missing,
Segmentation Error is never sent as an ErrorAck message.

Specification Document  Copyright 1999 - 2005 MOST Cooperation

 Page 49

MOST®
Specification

MOST Specification 05/2005

9) Application Error – Method Aborted:
This error is used in case of abortion of methods by OPType Abort or AbortAck. A MOST device
called "A" starts a method in Device "B". Due to some exceptional events, a third Device "C" aborts
the method running in Device “B”. In that case, Device “B” reports error "Method Aborted" to both the
Device that started the method and to the Device that aborted it since they are both currently involved
in the process. No other controllers need to know about this.

Receive application message

End

Syntax error?
(Addressing,

OPType)

Parameter error?
(Length, number,

range)

Start execution

Send Error OPType Error
ErrorCodes 0x01..0x04

Send Error OPType Error
ErrorCodes 0x05, 0x06

Send Error OPType Error
ErrorCodes 0x07, 0x40, 0x41

Send Error OPType Error
ErrorCode 0x42

Send Error OPType Error
ErrorCode 0x20

Temporarily not
available?

General
execution error?

Specific
execution error?

yes

yes

yes

yes

no

no

no

no

no

yes
Network Service

MOST Application

Send Error OPType Error
ErrorCode 0x0A

Secondary
node?

yes

no

Segmentation
error?

Send Error OPType Error
ErrorCode 0x0C

yes

no

Figure 2-15: Processing of messages including error check on different layers

Specification Document  Copyright 1999 - 2005 MOST Cooperation
Page 50

MOST®
Specification

MOST Specification 05/2005

Of course there exist errors on application level that do not appear in the MOST syntax (i.e. reported
by OPType Error). An example would be the processing of errors within a data transfer in TCP/IP.
From the point of view of the MOST system, such a data transport is only the transport of data packets
to a receiving function. The contents of the packets and the fact whether that data contains errors is
interpreted on application level only. Higher levels of error management and individual error
messages are to be specified individually.

2.3.2.5.2 Start, Error

By using Start, a controller triggers a method. This approach is useful only for Methods that do not
return results.

Controller FBlock (Slave)

Syntax-/ application error: FktID.Error

FktID.Start
Controller FBlock (Slave)

End of procedure

FktID.Start

Figure 2-16: Sequences when using Start with and without error

Please Note:
A method started by "Start" must be called only one time (no multiple instances are allowed).
In case a method that was started by "Start" is currently running, and a second controller tries
to start the same method again, the method has to reply an error "Busy". The already running
method is not affected by this new incoming request. For running several instances of the
same method, StartAck and ResultAck must be used.

2.3.2.5.3 StartResult, Result, Processing, Error

In opposite of triggering a method by using Start, the controller requires feedback when it uses
StartResult. It then expects reports about the currently running procedure (with Processing), as well
as about the Result (Result or error). If a method does not return a result by parameters, it returns
Result() as a signal of a successful processing.

If there are syntax or parameter errors during the calling of a method, there will be a reply using Error.
The method will not be started.

If a method that was started can generate a result within tProcessingDefault1 after reception of StartResult, it
returns the result by using “Result(<Parameter>)” as soon as it is available. There will be no reply
“Processing” in that case. The same applies to application errors.

Specification Document  Copyright 1999 - 2005 MOST Cooperation

 Page 51

MOST®
Specification

MOST Specification 05/2005

If a method cannot generate a result within tProcessingDefault1 after having received StartResult and if there
is no application error, it replies after that time by using “Processing”. After that it starts the timer
tProcessingDefault2. This timer works in the same way as tProcessingDefault1. That means that in case of
terminating the method within tProcessingDefault2, a reply “Result(<Parameter>)” will be sent. Otherwise
“Processing” will be reported when the timer expires. Upon sending processing, the timer is restarted.
The controller evaluates the first reply by using a timer interval of tWaitForProcessing1 (compensation of
eventual delays). In case that there is no reply within this time (Neither Result, nor Error, nor
Processing), it assumes an error. After receiving the first processing, it uses a timer with interval
tWaitForProcessing2 for the following receptions.

System Integrators may change the default timeout value (tProcessingDefault1) for acknowledging the start
of a method. This is to be done individually for the respective function, within the Fblock Specification.

There is also a possibility to define each method in the FBlock Specification with two timing values:

1. Initial timeout between StartResult and Processing
2. A second timeout between subsequent processing messages.

All changes must be documented in the related FBlock Specification and Dynamic Specification.

Specification Document  Copyright 1999 - 2005 MOST Cooperation
Page 52

MOST®
Specification

MOST Specification 05/2005

Error?
Syntax, Appl – Parameter,

Appl – not available?

Error?
Processing

Method Ready?

Timeout?

Start Method

Start Timer tProcessingDefault 1

No

Send Error

No

No

Send Error

Send Result
(<Parameter>)

Yes

Yes

No
End

Yes

Send Processing
Yes

StartResult Received

Start Timer tProcessingDefault 2

Figure 2-17: Flow for handling communication of methods (slave’s side)

Specification Document  Copyright 1999 - 2005 MOST Cooperation

 Page 53

MOST®
Specification

MOST Specification 05/2005

Error
Received?

Result
Received?

Processing
Received?

Start Timer tWaitForProcessing 1

No

No

Set Error Condition

Set Success Condition

Yes

Yes

No

End

Yes

StartResult Sent

Timeout?
No

Set Error Condition

Yes

Start Timer tWaitForProcessing 2

Figure 2-18: Flow for handling communication of methods (controller’s side)

Specification Document  Copyright 1999 - 2005 MOST Cooperation
Page 54

MOST®
Specification

MOST Specification 05/2005

2.3.2.5.4 StartAck, StartResultAck, ProcessingAck, ResultAck, ErrorAck

The behavior is equal to that of Start, StartResult, Processing, Result and Error (refer to section
2.3.2.5.3 on page 50). The only difference is, that the first parameter transports the SenderHandle
(refer to section 2.3.6.2 on page 71).

2.3.2.5.5 Get, Status, Error

By using OPType Get, a controller asks for the status of a property. In case of a request by using Get,
a reply using Status will be generated, if the syntax check has shown no errors. Otherwise Error will
be returned. A property shall reply on a request within tProperty. If the controller does not receive any
reply within tWaitForProperty after having sent Get, an error can be assumed. It is not critical, if the
controller reacts more tolerant and waits for a longer time. Nevertheless, an interruption of the waiting
process is a must.

2.3.2.5.6 Set, Status, Error

By using Set, the content of a Property is changed. Set behaves equal to Start. This means that the
controller does not expect any reply (except error reports). If the syntax check is ok, the command
can be executed.

The changed status of the property will be reported to all controllers that are registered for this
function. This is done via Notification. If the triggering Controller is registered, it will receive a status
report indirectly. This way is recommended, e.g., if the controller is registered in the Notification
Matrix. In addition to that it may be that the changing of a property, by a controller from outside,
generates the changing of the status of several other properties by some internal mechanisms.

Therefore the controlling of properties by using Set is the preferred mechanisms for Controllers that
are registered in the Notification Matrix of a controlled function block.

2.3.2.5.7 SetGet, Status, Error

SetGet is the preferred way of controlling function blocks, for Controllers:

• that control a property only in rare cases
• which are not registered in the Notification Matrix

SetGet is a combination of Set and Get, which means that the Controller (in case of a correct syntax)
automatically gets the changed status in return. This is independent of the Notification Matrix.

In case of a request by using SetGet, a reply using Status is generated, if the syntax check has shown
no errors. Otherwise Error will be returned. A property shall reply on a request within tProperty. If the
controller does not receive any reply within tWaitForProperty after having sent SetGet, an error can be
assumed. It is not critical, if the controller reacts more tolerant and waits for a longer time.
Nevertheless, an interruption of the waiting process is a must.

Specification Document  Copyright 1999 - 2005 MOST Cooperation

 Page 55

MOST®
Specification

MOST Specification 05/2005

2.3.2.5.8 GetInterface, Interface, Error

These OPTypes can be compared with Get, Status and Error (refer to section 2.3.2.5.5). Instead of
the status, the Function Interface will be requested.

2.3.2.5.9 Increment and Decrement, Status, Error

Increment and Decrement provide a relative changing of a variable in opposite to the absolute
changing by using Set. When using Increment or Decrement, the new status will be reported to the
triggering Controller as well as to the Controllers registered in the Notification Matrix. This is similar to
SetGet. In case of a Controller requesting Increment or Decrement although the respective maximum
or minimum is reached, no error will be reported. In fact the (old) new value will be reported. This
answer is directed to the triggering controller only. A reporting to the controllers registered in the
Notification Matrix is not required, since the value actually did not change.

2.3.2.5.10 Abort, Error

This OPType is available for methods only. When used, Abort terminates the execution of a method.
The message abortion is confirmed through an Error(Aborted) message. Abort must not have any
parameters. Please note, that methods in general should be aborted only by that application, which
has started the method. After the method has been aborted, information about this is sent out. Please
see 9) Application Error – Method Aborted: on page 49 for more information.

2.3.2.5.11 AbortAck, ErrorAck

This OPType is available for methods only. When used, AbortAck terminates the execution of a
method. The message abortion is confirmed through an Error(Aborted) message. In opposite to
“Abort”, AbortAck transports additional “routing” information (SenderHandle, as described in section
2.3.6.2 on page 71). AbortAck must not have any parameters except SenderHandle. Please note, that
methods in general should be aborted only by that application, which has started the method. After the
method has been aborted, information about this is sent out. Please see 9) Application Error – Method
Aborted: on page 49 for more information.

Specification Document  Copyright 1999 - 2005 MOST Cooperation
Page 56

MOST®
Specification

MOST Specification 05/2005

2.3.2.6 Length

Length specifies the length of the data field in Bytes. It is encoded in 16 Bits.

Length = 0x0000 Data field of length 0
Length = 0x0001 Data field of length 1 Byte.
Length = 0xFFFF Data field of length 65535 Byte.

Functions that need to transport voluminous application protocols communicate via MOST High
Protocol and the packet data transfer service. These functions will be marked in the FBlock
Specification.

Please note:
Length is not transmitted directly via MOST, but is reconstructed from the number of received
telegrams and the TelLen at the receiver’s side.

2.3.2.7 Data and Basic Data Types

In principle, the data field of a message in the application layer (also referred to as Application
message) may have any length up to 65535 Bytes. In a telegram on the control channel of the MOST
bus, the maximum length is 12 Bytes. So longer protocols must be segmented, i.e., be sent divided
up in several telegrams. It should be kept in mind that even on the application level, the data fields of
a protocol should exceed 12 Bytes only in exceptional cases.

Within a data field, none, one, or multiple parameters in any combination of the following data types
can be transported. They are transported MSB first. The sign is encoded in the most significant bit
and 2's complement coding is used for signed values. There are the following basic data types:

• Boolean • Unsigned Byte • Unsigned Word

• BitField • Signed Byte • Signed Word

• Unsigned Long • Enum • Stream

• Signed Long • String • Classified Stream

• Short Stream

Specification Document  Copyright 1999 - 2005 MOST Cooperation

 Page 57

MOST®
Specification

MOST Specification 05/2005

Parameters are transmitted in a way that can be displayed directly. Using only the data types
mentioned above, no floating point format would be possible. The missing information about the
location of the decimal point is added via an exponent of type signed Byte. The value to be displayed
must be transported in the following way:

value to be displayed = transmitted value * 10Exponent

Example 1:
 transmitted value: 1073 (word)
 exponent: -1
 step: 1
 unit: MHz
 value to be displayed: 107.3 (MHz) (can be changed in steps of 100 kHz)

In case of an Increment operation with NSteps = 5, the current frequency would be incremented from
107.3 MHz to 107.8 MHz.

Example 2:
 transmitted value: 1073 (word)
 exponent: +5
 step: 1
 unit: Hz
 value to be displayed: 107,300,000 (Hz) (can be changed in steps of 100 000 Hz)

In case of an Increment operation with NSteps = 5, the current frequency would be incremented from
107,300,000 Hz to 107,800,000 Hz.

Example 3:
 transmitted value: 1000 (word)
 exponent: -3
 step: 10
 unit: m
 value to be displayed: 1.000 (m) (can be changed in steps of 10 mm)

In case of an Increment operation with NSteps = 5, the current length would be incremented from
1.000 m to 1.050 m.

The exponent can be already known through the receiver of the parameter (controller), or it can be
requested through the sender (function) of the value (refer to section 2.3.11 on page 77). It is not
transported together with the parameter.

Specification Document  Copyright 1999 - 2005 MOST Cooperation
Page 58

MOST®
Specification

MOST Specification 05/2005

2.3.2.7.1 Boolean

Definition of Type Comments

1 Byte Only one bit can be used in each Byte.

2.3.2.7.2 BitField

Definition of Type Comments

Size Byte = (Mask.Data)

Size: - (Total Size of the BitField): 1, 2, or 4 Bytes

Data: ½ Size Byte (Data Content Area)

Mask: ½ Size Byte (Masking Area):
 "Mask" is a masking bit field of the same size as the Data Content
 Area "Data". It indicates to which bits in the Data Content Area of the
 BitField an operation shall be applied. The LSB of "Mask" masks the
 LSB of the Data Content:

 Bit k (Mask) = 1 -> apply Operation to Bit k (Data)
 Bit k (Mask) = 0 -> do not apply operation to Bit k (Data)

Example:
State: MyBitField.Status (XXXX XXXX, 1010 1001)
Operation: MyBitField.Set (0000 1000, 1010 0111)
NewState: MyBitField.Status (XXXX XXXX, 1010 0001)

“X” means “don’t care” in this example. These bits should be set to zero by the sender of the Status
message. However, their content must be ignored in the receiver of the Status message.

2.3.2.7.3 Enum

Definition of Type Comments

1 Byte -

2.3.2.7.4 Unsigned Byte

Definition of Type Comments

1 Byte -

Specification Document  Copyright 1999 - 2005 MOST Cooperation

 Page 59

MOST®
Specification

MOST Specification 05/2005

2.3.2.7.5 Signed Byte

Definition of Type Comments

1 Byte -

2.3.2.7.6 Unsigned Word

Definition of Type Comments

2 Byte -

2.3.2.7.7 Signed Word

Definition of Type Comments

2 Byte -

2.3.2.7.8 Unsigned Long

Definition of Type Comments

4 Byte -

2.3.2.7.9 Signed Long

Definition of Type Comments

4 Byte -

Specification Document  Copyright 1999 - 2005 MOST Cooperation
Page 60

MOST®
Specification

MOST Specification 05/2005

2.3.2.7.10 String

Definition of Type Comments

Variable length = (Identifier.Content.Terminator)

Please note:
In general, only “MSB first, High Byte first” notation must be used for strings. Every string
starts with an Identifier and is Null terminated.

Identifier: 1 Byte

Content: Characters

Terminator: 1 Character Null character. Number of zeros. Depends on encoding.

For calculating length, only the number of characters is relevant. Length explicitly excludes the
Identifier and the terminating character(s). Strings that are using the RDS character set may contain
codes for switching the code pages. This can produce strings, which need more Bytes in memory
than the number of characters they contain.
The encoding of an "empty" string depends on the used code:

Code "Empty" String Comment
UNICODE, UTF16 0x00,0x00,0x00 -
ISO 8859/15 8 bit 0x01,0x00 -
Unicode, UTF8 0x02,0x00 -
RDS 0x03,0x00 -

Since all strings are null terminated, character sets that use a null character are not allowed.

2.3.2.7.11 Stream

Definition of Type Comments

Any Data -

Code String type ASCII compatible

0x00 Unicode, UTF16 No
0x01 ISO 8859/15 8bit Yes
0x02 Unicode, UTF8 No
0x03 RDS No
0x04 DAB Charset 0001 No
0x05 DAB Charset 0010 No
0x06 DAB Charset 0011 Yes
0x06 - 0xBF Reserved
0xC0 – 0xFF Proprietary

Specification Document  Copyright 1999 - 2005 MOST Cooperation

 Page 61

MOST®
Specification

MOST Specification 05/2005

2.3.2.7.12 Classified Stream

Definition of Type Comments

Variable length =(Length.MediaType.Content)

Classified Stream acts as a container for different objects.

Length: 2 Bytes Length of the stream.

MediaType: Null terminated ASCII string (no coding identifier) containing the data typing of the

object that is transported in the Classified Stream. The format used for this is the
same as for HTTP/1.1.
MediaType = type “/” subtype *(“;” parameter)

The MediaType’s values type, subtype and parameter are specified by the Internet
Assigned Number Authority IANA. If a MediaType is not available “application/octet-
stream” shall be assumed when MediaType is an empty string.

Information about HTTP/1.1 can be found in:
RFC 2616 - Hypertext Transfer Protocol -- HTTP/1.1, R. Fielding, J. Gettys, J. Mogul,
H. Frystyk, L. Masinter, P. Leach, T. Berners-Lee. June 1999. (Obsoletes RFC 2068).

2.3.2.7.13 Short Stream

Definition of Type Comments

Variable length =(Length.Content)

Length: 1 Byte Length of the stream (max 255 Bytes)

Specification Document  Copyright 1999 - 2005 MOST Cooperation
Page 62

MOST®
Specification

MOST Specification 05/2005

2.3.3 Function Formats in Documentation

The protocols have different DeviceIDs, depending on the protocol being received or transmitted. In
documentation that must be human readable, the following general description must be used, which
covers both cases:

SrcAdr -> TrgAdr: FBlockID.InstID.FktID.OPType.Length(Parameter)

SrcAdr and TrgAdr are the physical MOST addresses of the sending and the receiving device,
respectively. On the sender’s side, it is identical with the TrgAdr, and on the receiver’s side with the
SrcAdr (please refer to the example in section 2.3.5 on page 63). In most cases, only one instance of
the function block is available in the system, and InstID can be omitted. Descriptions can also be
simplified by omitting the Length.

SrcAdr -> TrgAdr : FBlockID.FktID.OPType(Parameter)

Example:

Choosing track of the CD changer:

HMI -> CDC : AudioDiskPlayer.Track.Set(5)
CDC -> HMI : AudioDiskPlayer.Track.Status(5)

2.3.4 Protocol Catalogs

The telegrams are included in a catalog and are grouped by functions (Function catalog). It is a good
approach to implement this catalog in a database, so that a printable version can be produced.

Specification Document  Copyright 1999 - 2005 MOST Cooperation

 Page 63

MOST®
Specification

MOST Specification 05/2005

2.3.5 Application Functions on MOST Network (Introduction)

The controlling mechanisms described in this document are generally independent of the kind of bus
used. Protocols on the application level are described in a universal way. They are transported
virtually from one application to the other. In reality they are transmitted with the help of a bus system,
here the MOST network, which is described in detail below.

Application

Network Service

MOST Network
Interface
Controller

Application

Network Service

MOST Network
Interface
Controller

Real Communication Real Communication

Real communication
MOST telegrams

Physical addressing

Virtual communication protocols
Functional addressing

Figure 2-19: Virtual communication between two devices on application layer and real comm. via network

All application protocols are finally transferred via the control channel of the MOST Network. From the
application’s point of view, all protocols are passed on to the Network Service. Depending on the
length, an application protocol is sent with a single transfer if it fits into one MOST telegram, otherwise
via segmented transfer.

In a MOST Network, nodes, or devices, are addressed. In order to transport a protocol to a function
block, the MOST telegrams are provided with the address of the device that contains the function
block.

Here, the entire data flow of an interaction between two devices via the network layer is described.
One device controls the functions of the other. The figure below shows the properties of a function
block with the FBlockID CD and the InstID 1. The function block is found in device CD Player with the
physical MOST address CDC.

Specification Document  Copyright 1999 - 2005 MOST Cooperation
Page 64

MOST®
Specification

MOST Specification 05/2005

CDC

CD.1

DISK

TRACK

TIME

STATUS

6

10

01:23

PLAY

Figure 2-20: Device with MOST address CDC, a function block CD Player with FBlockID CD, and its functions

For example, another track can be chosen by reception of the following protocol:

 CD.1.Track.Set(10)

This protocol is sent by a device with the physical MOST address HMI. Therefore it will be passed on
to the Network Service in the following form:

 FFFF.CD.1.Track.Set(10)

The first part is a special DeviceID, which means that the physical address of the receiver is not known
on the application level. The Network Service will complement the address. The result is:

 CDC.CD.1.Track.Set(10)

For transmission this is complemented by the sender’s physical address:

 HMI.CDC.CD.1.Track.Set(10)

Since the receiving device knows its own physical address, this address does not need to be passed
on to the application level. The received protocol therefore looks like:

 HMI.CD.1.Track.Set(10)

If the function wants to report its new status, it builds the following protocol:

 HMI.CD.1.Track.Status(10)

Based on this, the Network Service builds the following telegram:

 CDC.HMI.CD.1.Track.Status(10)

Specification Document  Copyright 1999 - 2005 MOST Cooperation

 Page 65

MOST®
Specification

MOST Specification 05/2005

In the HMI the receiver’s address is removed and the protocol is passed to the application:

 CDC.CD.1.Track.Status(10)

The general data flow via the different layers in the two devices is displayed in the following figure:

Device 2Device 1

Application

Network Service

MOST Network
Interface
Controller

Application

Network Service

MOST Network
Interface
Controller

DeviceID1.DeviceID2.FBlockID.InstID.FktID.OPType(Parameters)

DeviceID1.FBlockID.InstID.FktID.OPType(Parameters)

DeviceID1.FBlockID.InstID.FktID.OPType(Parameters)

DeviceID2.FBlockID.InstID.FktID.OPType(Parameters)

????.FBlockID.InstID.FktID.OPType(Parameters)

FBlockID.InstID.FktID.OPType(Parameters)

Figure 2-21: Communication between two devices via the different layers

Specification Document  Copyright 1999 - 2005 MOST Cooperation
Page 66

MOST®
Specification

MOST Specification 05/2005

2.3.6 Controller / Slave Communication

For communication between Controllers and Slaves, properties and methods must be differentiated.

2.3.6.1 Communication with Properties Using Shadows

Below, communication between a controlling and a controlled device is explained for Properties by an
example:

• Controlling device (Controller):
Contains a function block controlling another function block.

• Controlled device (Slave):
Contains only controlled function blocks (for demonstration purpose).

The properties of a device should describe the current operation status completely at any time. The
figure below shows the properties of a function block CD changer with FBlockID CD and the InstID 1
in the device with the MOST address CDC.

CDC

CD.1

DISK

TRACK

TIME

STATUS

6

10

01:23

PLAY

Figure 2-22: Example for a Slave device

Operation status of the player is determined by the properties Disk (number of loaded CD), Track,
Time, and Status (Play, Stop, Forward, Rewind and Eject). By changing these properties the player
can be controlled by another device.

For example, another track can be chosen by sending the following protocol:

HMI->CDC: CD.1.Track.Set(10)

If this operation is successful, the new state of the CD player is confirmed by the following protocol:

CDC->HMI: CD.1.Track.Status(10)

By sending this protocol, the player can be stopped:

HMI->CDC: CD.1.Status.Set(Stop)

Specification Document  Copyright 1999 - 2005 MOST Cooperation

 Page 67

MOST®
Specification

MOST Specification 05/2005

Also in this case, the new state of property Status can be transmitted via a protocol:

CDC->HMI: CD.1.Status.Status(Stop)

These status messages are sent by the CD player, even in a case where a property changes itself,
e.g., when the player changes to the next track during play mode (on the condition that another device
is registered in the notification matrix of function block CD).

The MOST device address of the CD changer (represented by the abbreviation CDC) together with
FBlockID and the InstID describe the property to be changed. To make sure that the protocols for
controlling a device find their way through the system, the property description must be unique in the
entire system.

If there are multiple CD players in the system, they get different InstIDs, and in addition to that,
different MOST addresses. Based on that, two players can be controlled by a HMI in the following
way:

???->CDC1: CD.1.STATUS.SET(STOP)
???->CDC2: CD.2.STATUS.SET(STOP)

By this, two CD function blocks can be addressed unambiguously, even if they are located within one
physical device with one MOST address. This also guarantees that status reports can be assigned
unambiguously:

CDC ->???: CD.1.STATUS.STATUS(STOP) Status of CD in CDC

CDC1->???: CD.1.STATUS.STATUS(STOP) Status of CD in CDC1
CDC2->???: CD.2.STATUS.STATUS(STOP) Status of CD in CDC2

CDC->???: CD.1.STATUS.STATUS(STOP) Status of 1st Player in CDC
CDC->???: CD.2.STATUS.STATUS(STOP) Status of 2nd Player in CDC

The controlling device (controller) contains the Shadows of the functions it controls. The Shadow of a
function in the control device represents an image of the property of the Slave device. That means, for
each controlled property of the Slave device, the control device contains a respective variable. For the
controller, the function seems to reside in its own memory area. This is shown in the figure below:

CD.1

DISK

TRACK

TIME

STATUS

6

03

01:23

PLAY

HMI

HMI->CDC: CD.1.TRACK.SET(TRACK+1)

CDC
CD.1

DISK

TRACK

TIME

STATUS

6

03

01:23

PLAY
CDC->HMI: CD.1.TRACK.STATUS(03)

Figure 2-23: Virtual illustration of the controlled properties in the control device

Specification Document  Copyright 1999 - 2005 MOST Cooperation
Page 68

MOST®
Specification

MOST Specification 05/2005

The HMI shown in Figure 2-23 has an image of all properties of CDC (Slave device) represented by
the variables Disc, Track, Time and Status. These variables are required to store the display values,
and can be used for control purposes too. The example shows the flow of communication when using
the “Next track” button.

On a click onto the button, the HMI takes the contents of its local variable Track, increments it by one,
and sends the protocol CD.1.Track.Set(Track+1) to device CDC. After the player has changed track,
it replies by sending protocol CD.1.Track.Status(3). Addressing of the response is equal to the
addressing of the command, except the address, since the answer is sent to a (virtual) identical
function block. Variable Track reacts only on that protocol and stores the new value. The change of
variable Track causes the HMI to update its display.

As shown in the figure below, there is one protocol assigned to each variable unambiguously. Every
variable in HMI “reacts” only on the assigned protocol, sent from the respective device.

CD.1

DISK

TRACK

TIME

STATUS

6

03

01:23

PLAY

CDC->?:CD.1.DISK.STATUS

CDC->?:CD.1.TRACK.STATUS

CDC->?:CD.1.TIME.STATUS

CDC->?:CD.1.STATUS.STATUS

HMI

CDC
CD.1

DISK

TRACK

TIME

STATUS

6

03

01:23

PLAY

CDC->HMI: CD.1.TRACK.STATUS(03)

Figure 2-24: Unambiguous assignment between protocol and variable

The figure below shows the advantage of this approach when controlling multiple devices. The HMI
has an image of the controlled CD player, as well as an image of the tuner. Even during play operation
of the CD player, the tuner sends status changes to the HMI. In CD operation mode, this information is
not shown on the display, but is stored in the respective variables. This means that the current
information about the tuner is available immediately if the operation mode is changed from CD to
Tuner, with no extra polling needed.

Specification Document  Copyright 1999 - 2005 MOST Cooperation

 Page 69

MOST®
Specification

MOST Specification 05/2005

CD.1

DISK

TRACK

TIME

STATUS

6

03

01:23

PLAY

HMI

HMI->CDC: CD.1.TRACK.SET(TRACK+1)

CDC

CD.1

DISK

TRACK

TIME

STATUS

6

03

01:23

PLAY

CDC->HMI: CD.1.TRACK.STATUS(03)

TUNER.1

FREQUENCY

BAND

STEREO

98,4

FM

ON

RADIO

TUNER.1

FREQUENCY

BAND

STEREO

98,4

FM

ON

RADIO->HMI:
TUNER.1.STEREO.STATUS(ON)

Figure 2-25: Controlling multiple devices

A similar case could be imagined, if several identical CD players are available in the network.
Operation mode of the HMI could be changeable, for example, between CD1 and CD2. The display
would show only the status of the currently selected player, and the keyboard would be switched, too.

As shown in the graphic below, such a HMI would contain two sets of variables (shadows), one for
each CD player. The variables for CD.1 react only upon protocols of CD.1, while the variables for
CD.2 react only upon protocols of CD.2. If both of the function blocks are located in one device,
handling would be identical.

Both sets of variables are updated, even if only one set is displayed. When switching between the
players, all values are available immediately.

Specification Document  Copyright 1999 - 2005 MOST Cooperation
Page 70

MOST®
Specification

MOST Specification 05/2005

CD.1

DISK

TRACK

TIME

STATUS

6

03

01:23

PLAY

CDC->?:CD.1.DISK.STATUS

CDC->?:CD.1.TRACK.STATUS

CDC->?:CD.1.TIME.STATUS

CDC->?:CD.1.STATUS.STATUS

HMI

CDC

CD.1

DISK

TRACK

TIME

STATUS

6

03

01:23

PLAY

CDC->HMI: CD.1.TRACK.STATUS(03)

CD.2

DISK

TRACK

TIME

STATUS

6

03

01:23

PLAY

CDC->?:CD.2.DISK.STATUS

CDC->?:CD.2.TRACK.STATUS

CDC->?:CD.2.TIME.STATUS

CDC->?:CD.2.STATUS.STATUS

CDC

CD.2

DISK

TRACK

TIME

STATUS

6

03

01:23

PLAY

CDC->HMI: CD.2.TRACK.STATUS(03)

Figure 2-26: Controlling two identical devices

For the assignment of protocols and variables in the control device, the respective protocols are
defined for each variable. Each variable therefore has a filter function that can be passed only by the
“own” protocol.

This can be done by a table, which contains the protocols consisting of MOST sender address,
FBlockID, InstID, and FktID. There can be one pointer assigned to each protocol, pointing to the
respective variable. In addition to that, or as an alternative, function pointers are also allowed. By
this, functions could be called depending on protocols, and controlled by tables.

The concept can also be realized by an object-oriented approach, where variables are realized by
objects with protocol filters and methods for representation. Following this approach, all incoming
protocols are distributed to all objects, but only that object whose filter lets the protocol pass, will react.
Analogously, the incoming protocols are compared to all protocols in the table when using the table
approach.

On more complex control devices, this approach can be optimized by filtering the protocols step by
step. The figure below shows an HMI, which contains Shadows of a CD player and a tuner. These
Shadows are implemented as interface objects. The interface objects are combined in two parent
objects that filter the incoming protocols by sender address and InstID. The interfaces themselves
only need a filter for the FktID.

Specification Document  Copyright 1999 - 2005 MOST Cooperation

 Page 71

MOST®
Specification

MOST Specification 05/2005

CDC

CD.1

DISK

TRACK

TIME

STATUS

6

03

01:23

PLAY

RADIO

TUNER.1

FREQUENCY

BAND

STEREO

98,4

FM

ON

FREQUENCY

BAND

STEREO

98,4

FM

ON

???.FREQUENCY.STATUS

???.BAND.STATUS

???.STEREO.STATUS

RADIO->?: TUNER.1.?????

TUNER

CD

DISK

TRACK

TIME

STATUS

6

03

01:23

PLAY

???.DISK.STATUS

???.TRACK.STATUS

???.TIME.STATUS

???.STATUS.STATUS

CDC->?: CD.1.?????

HMI CDC->HMI: CD.1.TRACK.STATUS(03)

RADIO->HMI: TUNER.1.FREQUENCY.STATUS(98,4)

???.TRACK.STATUS(03)

???.FREQUENCY.STATUS(98,4)

Figure 2-27: Hierarchical structure of the protocol filter (command interpreter)

Without object-oriented programming, the stepwise filtering can be implemented by using a message
dispatcher. This dispatcher would forward the protocols to the respective function blocks based on
sender address, FBlockID and InstID. Every function block can then analyze the FktIDs itself, by an
own command interpreter.

Based on the well-structured protocols, further analyzing steps can be inserted if required.

2.3.6.2 Communication with Methods

2.3.6.2.1 Standard Case

In general, communication with properties is equal to communication with methods. This means that a
controller controls a function in a Slave Device and there will be a reply to the Controller Device. An
example:

Controller -> Slave: FBlockID.InstID.StartResult (Data)

Slave -> Controller: FBlockID.InstID.Result (Data)

Slave -> Controller: FBlockID.InstID.Error (ErrorCode, ErrorInfo)

Specification Document  Copyright 1999 - 2005 MOST Cooperation
Page 72

MOST®
Specification

MOST Specification 05/2005

2.3.6.2.2 Special Case Using Routing

In some cases there are methods where the general way of communication is not sufficient. The
philosophy of building Shadows when on handling properties is based on the fact, that every property
has only one single and unique state. This state then is imaged on one or more controllers. This
condition is not valid for methods. So it may happen that a method is processing a request for one
Controller, while it appears to another Controller to be busy. It has many states.

In addition to that, in methods a process is triggered, which has a longer processing time. The
Controller may need to wait for a result. If several tasks within a device accessed one method at the
same time, it must be possible to route the answer back to the respective task.

One example can be the SMS service in a GSM module of the device Telephone. In HMI, three tasks
desired to send an SMS message independently from each other. The message of task 1 was sent,
the one of task 2 was buffered, while the message of task 3 was rejected. The respective status
message must now be assigned, which is not possible using the communication methods described
up to now.

HMI

TASK 1

TASK 2

TASK 3

SMS

GSM.1

?
TELEPHONE->HMI:

GSM.1.SMSSend.Error(Busy)
SMSSend

GSM.1

TELEPHONE

Figure 2-28: Routing answers in case of multiple tasks (in one controller) using one function

To provide routing in such cases, the OPTypes StartResultAck, ProcessingAck, ResultAck, and
ErrorAck are introduced. The behavior of these OPTypes is identical to that of StartResult,
Processing, Result and Error. The only difference is that as first parameter the SenderHandle (data
type unsigned word) is inserted. The SenderHandle is set by the Controller at StartResultAck and
characterizes the sender more in detail (Task, process...). The SenderHandle will not be interpreted by
the Slave, but will be returned in an answer (ProcessingAck, ResultAck or ErrorAck).

Specification Document  Copyright 1999 - 2005 MOST Cooperation

 Page 73

MOST®
Specification

MOST Specification 05/2005

The SMS call in Task 1 may look like:

Controller -> Slave: Telephone.1.SMSSend.StartResultAck
(SenderHandle1.SMSData)

After successful transmission, Task 1 gets:

Slave -> Controller: Telephone.1.SMSSend.ResultAck (SenderHandle1)

If Task 3 desires to send in the meantime, it sends:

Controller -> Slave: Telephone.1.SMSSend.StartResultAck (SenderHandle3.SMSData)

And it then gets in return:

Slave -> Controller: Telephone.1.SMSSend.ErrorAck (SenderHandle3.ErrorCode=”Busy”)

It must be decided individually, which methods must have a detailed back addressing with OPTypes
StartResultAck, ProcessingAck, ResultAck, and ErrorAck.

Specification Document  Copyright 1999 - 2005 MOST Cooperation
Page 74

MOST®
Specification

MOST Specification 05/2005

2.3.7 Seeking Communication Partner

It may happen that an application has to seek a communication partner, that is, a function block. This
may happen in a self-configuring audio system with four or six active speakers. The audio controller
knows that function blocks with the FBlockID AudioAmplifier must be available, but does not know how
many, or where. Therefore it has to seek, and gets the instance IDs as reply. With the help of the
InstIDs and the number of audio amplifiers, it can configure itself correctly.

To seek a function block, the seeking block sends the following protocol to the NetworkMaster:

control -> ??? : NetworkMaster.CentralRegistry.Get (FBlockID)

The NetworkMaster contains the Central Registry, which represents an image of the physical and
logical system configuration. It answers with a list of all matching entries of the Central Registry with
physical and functional address:

??? -> control : NetworkMaster.CentralRegistry.Status (
 Rx/TxLog.FBlockID.InstID,
 Rx/TxLog.FBlockID.InstID,...)

Optionally, the InstID can also be specified, to search for a certain function block:

control -> ??? : NetworkMaster.CentralRegistry.Get (FBlockID.InstID)

If the respective function block does not exist, the NetworkMaster replies with an error and error code
0x07 “Parameter not available”. It returns the number of the parameter (0x01 in this case) and the
value (FBlockID.InstID in this case).

2.3.8 Requesting Function Block Information from a Device

To obtain information about the function blocks contained by a device, every NetBlock has the
property FBlockIDs (0x000). It will be read in the following way:

control -> ??? : NetBlock.FBlockIDs.Get

and answers with a list of the contained FBlockIDs. The function block that most characterizes the
device (e.g., Tuner in a radio device) is listed first. The NetBlock and function block
EnhancedTestability do not need to be listed, as they are mandatory function blocks in every device:

??? -> control : NetBlock.FBlockIDs.Status (FBlockID1.InstID1,
 FBlockID2.InstID2...
 FBlockIDN.InstIDN)

NetBlock.FBlockIDs

FBlockID 1 ...FBlockID 2 FBlockID 3 FBlockID N

Figure 2-29: Reading the function blocks of a device from NetBlock

Specification Document  Copyright 1999 - 2005 MOST Cooperation

 Page 75

MOST®
Specification

MOST Specification 05/2005

2.3.9 Requesting Functions from a Function Block

In an adaptable system it may happen that a controller does not know exactly which functions are
available in a function block (e.g., simple or high-end audio amplifier). Therefore, every function block
has the function FktIDs (0x000). It is read as follows:

control -> ??? : FBlockID.InstID.FktIDs.Get

Within a function block, FktIDs between 0x000 and 0xFFF (4096 different FktIDs) can be available.
The FktIDs are assigned as described in 2.3.2 on page 38. This raises the problem of a compact
response, if the functions contained in a function block are requested. It is solved by a mechanism
derived from the run length encoding. A bit field is built where the first bit is set to 1 if FktID 0x000 is
available; the second bit is set to 1 if FktID 0x001 is available, and so on. Such a bit field may look
like:

FktID 000 001 002 003 004 005 006 ... 021 022 023 024 ... A00 A01 A02 A03 ... FFF
Bit field 1 1 1 0 0 1 1 0 0 0 1 1 0 0 1 1 0 0 0 0

The answer lists only the positions (FktIDs) where the bit state changes, beginning with an initial bit
state of 1.

For the example shown above, the result would be:

??? -> control: FBlockID.InstID.FktIDs.Status (002 004 006 022 024 A00 A02 0)

The last 0 represents a stuffing nibble.

NetBlock.FBlockIDs

FBlockID 1

FBlockID1.FktIDs

FktID 2 FktID 3 FktID NFktID 1 ...

...FBlockID 2 FBlockID 3 FBlockID N

Figure 2-30: Requesting the functions contained in an application block

Specification Document  Copyright 1999 - 2005 MOST Cooperation
Page 76

MOST®
Specification

MOST Specification 05/2005

2.3.10 Transmitting the Function Interface

2.3.10.1 Principle

In principle, function interfaces can be transmitted to a controller, or a HMI.

NetBlock.FBlockIDs
FBlockID 1

FBlockID1.FktIDs
FktID 2 FktID 3 FktID NFktID 1 ...

...FBlockID 2 FBlockID 3 FBlockID N

FktID1.Interface
Min Max UnitType ...

Figure 2-31: Requesting the function interface of a function

The flow for determining all function interfaces of a function block looks like:

control -> slave : FBlockID1.FktID1.GetInterface
slave -> control : FBlockID1.FktID1.Interface ([Interface Description])
control -> slave : FBlockID1.FktID2.GetInterface
slave -> control : FBlockID1.FktID2.Interface ([Interface Description])
...
control -> slave : FBlockID1.FktIDN.GetInterface
slave -> control : FBlockID1.FktIDN.Interface ([Interface Description])

The parameter list “Interface Description” contains information about a function interface.

2.3.10.2 Realization of the Ability to Extract the Function Interface

In the FBlock Specifications, every interface of classified functions is described. By doing this, a
classified definition of application protocols, as well as a uniform description, is possible, which can be
based onto a few classes, which are described in the section 2.3.11.

Specification Document  Copyright 1999 - 2005 MOST Cooperation

 Page 77

MOST®
Specification

MOST Specification 05/2005

2.3.11 Function Classes

When having a look at function classes, properties and methods must be differentiated. The properties
themselves consist of such with one variable, and of such with multiple variables.

2.3.11.1 Properties with a Single Parameter

Many functions contain only a single parameter. These functions can be divided into classes, which
correspond with the type declaration in programming languages. The class of a property is derived
from the basis data type (Refer to section 2.3.2.7 on page 56) of its variable.

At the moment there are the following function classes for single properties:

Function class Explanation

Switch Properties of this class contain a variable of type Boolean (on/off; up/down). It
can be set (Set, SetGet) or read (Get, Status).

Number Properties of this class contain a numeric variable (frequency, speed limit,
temperature), which can be read (Get, Status), set absolutely (Set, SetGet) or
changed relatively (Increment, Decrement).

Text Properties of this class have a string variable (Status), e.g., Warning, Hint.

Enumeration Properties of this class contain a variable of type Enum. They provide an
unchangeable number of invariable elements, from which can be chosen
(Set). Examples: Drive status (Stop, Pause, Play, Forward, Rewind), Dolby
(B, C, Off).

BoolField Properties of this class contain a number of bits that should either be used as
flag field, or as controlling bits that are always manipulated together.

BitSet Properties of this class are based on data type BitField. They contain a
number of bits, which can be manipulated individually.

Container Properties of this class contain a variable of type Classified Stream.

Table 2-7: Classes of functions with a single parameter

The function classes (basic classes) with one variable and their resulting protocols are described in
detail below. The following universal parameters are used:

Flags: 8 Bit

Bit 6-7 Bit 4-5 Bit 3 Bit 2 Bit 1 Bit 0

Reserved Channel Type Notification Unicode Enabled Visible

By using the Visible bit, the device can influence whether the function is displayed at
the moment or not (default = 1 = visible). It is possible to disable a function
temporarily (like the gray options in PC application’s menus). This is done by setting
the Enabled bit to 0. Bit 2 indicates whether a function uses Unicode or standard
strings (note: Unicode is not ASCII compatible). The Notification bit shows whether a
function supports notification. This bit is valid only for properties. The Channel Type
bit field consists of two bits. It shows the type of channel that is used when
communicating with the function. Table 2-8 shows the three possible modes.

Specification Document  Copyright 1999 - 2005 MOST Cooperation
Page 78

MOST®
Specification

MOST Specification 05/2005

OPType Property Method Mode 0 Mode 1 Mode 2

0 Set Start C A A
1 Get Abort C A C
2 SetGet StartResult C A A
3 Increment C A C
4 Decrement C A C
5 GetInterface GetInterface C C C
6 StartResultAck C A A
7 AbortAck C A C
8 StartAck C A A
9 ErrorAck C A C
A ProcessingAck C A C
B Processing C A A
C Status Result C A A
D ResultAck C A C
E Interface Interface C C C
F Error Error C A C

Table 2-8: The different modes of the bit field Channel Type

The meaning of the characters "C" and "A" in the table is as follows:
C: messages on control channel without using MOST High
A: messages on the asynchronous channel using MOST High

Mode 0:
This is the standard mode where all communication with the function is done via the
control channel.

Mode 1:
All communication is done via the MOST High Protocol on the asynchronous channel.
The only exceptions from this are the OPTypes GetInterface and Interface which need
to be available on the control channel so that the interface can be received regardless
of if the requesting node is using MOST High or not.

Mode 2:

 This is a mixed mode where only the OPTypes that are carrying a lot of data are
accessed over the asynchronous channel via the MOST High Protocol. An exception
is processing which does not contain a lot of data but is sent in the same way as
Result i.e., over the asynchronous channel.

Bit 6 and 7 are reserved for future use.

Specification Document  Copyright 1999 - 2005 MOST Cooperation

 Page 79

MOST®
Specification

MOST Specification 05/2005

Class: 8 Bit 0x00 Unclassified method

 0x10 Unclassified property
 0x11 Switch
 0x12 Number
 0x13 Text
 0x14 Enumeration
 0x15 Array Refer to section 2.3.11.2.2 on page 92.
 0x16 Record Refer to section 2.3.11.2.1 on page 90.
 0x17 Dynamic Array Refer to section 2.3.11.2.3 on page 95.
 0x18 Long Array Refer to section 2.3.11.2.4 on page 97.
 0x19 BoolField
 0x1A BitSet
 0x1B Container

 0xFF Abort (No further specifications behind this location)

OPTypes: 16 Bit BitField of available OPTypes (1 = OPType available).

LSB represents the least significant OPType "Set", which has code
0x0.

Name: Name of function as null terminated string.

Specification Document  Copyright 1999 - 2005 MOST Cooperation
Page 80

MOST®
Specification

MOST Specification 05/2005

2.3.11.1.1 Function Class Switch

OPType Parameters

Set Boolean
Get
Status Boolean

SetGet Boolean

GetInterface
Interface Flags, Class, OPTypes, Name

Error ErrorCode, ErrorInfo

Boolean: 1 Byte 0 for off, 1 for on

Example: RDSOnOff in AM/FMTuner1

Function: RDSOnOff e.g., 0x00A

Flags: visible, enabled, 0000 1011 = 0x0B
 no Unicode, notification

Class: Switch 0x11

OPTypes: Get, SetGet, Status 1101 0000 0010 0110 = 0xD026
 GetInterface, Interface,
 Error

Name: RDSOnOff "RDS"

Upload interface:

Tuner -> HMI: AM/FMTuner.1.RDSOnOff.Interface (0B 11 D026 “RDS”)

Setting RDS = OFF:

HMI -> Tuner: AM/FMTuner.1.RDSOnOff.SetGet (00)

Please note:
This is a hypothetical example. It does not necessarily follow the MOST FBlock Specification.

Specification Document  Copyright 1999 - 2005 MOST Cooperation

 Page 81

MOST®
Specification

MOST Specification 05/2005

2.3.11.1.2 Function Class Number

OPType Parameters

Set Number
Get
Status Number

SetGet Number

Increment NSteps
Decrement NSteps

GetInterface
Interface Flags, Class, OPTypes, Name, Units, DataType, Exponent, Min, Max, Step

Error ErrorCode, ErrorInfo

DataType: Uns. Byte Type of variable:
 0x00 Unsigned Byte
 0x01 Signed Byte
 0x02 Unsigned Word
 0x03 Signed Word
 0x04 Unsigned Long
 0x05 Signed Long

Exponent: Signed Byte Position of decimal point; Value = Number * 10Exponent

Min: Minimum value of variable of type DataType

Max: Maximum value of variable of type DataType

Step: Step width for adjusting type DataType. The following
 condition must always be true:
 Max = Min + (n * Step)

NSteps: Uns. Byte Number of steps, as defined under "Step width for adjusting".
 Default value is 1, value 0 is not allowed.
 NSteps has no exponent, but has the same unit
 like the Number parameter.

Units: Uns. Byte Unit

Specification Document  Copyright 1999 - 2005 MOST Cooperation
Page 82

MOST®
Specification

MOST Specification 05/2005

Unit Encoding Unit Encoding
none 0x00 Speed:
 km/h 0x50
Distance: Miles/h 0x51
cm 0x01 m/s 0x52
m 0x02
km 0x03 Temperature:
miles 0x04 °C 0x60
 F 0x61
Time:
us (Micro second) 0x10 Volume:
ms (Millisecond) 0x11 dB 0x70
s (Second) 0x12
min (Minute) 0x13 Voltage:
h (Hour) 0x14 mV 0x80
d (day) 0x15 V 0x81
mon (Month) 0x16
a (Year) 0x17 Current:
 mA 0x90
Frequency: A 0x91
1/min 0x20
Hz 0x21 Angle:
kHz 0x22 Degrees 0xA0
MHz 0x23 Minutes 0xA1
 Seconds 0xA2
Volume: 360°/ 232 0xA3
l (Liter) 0x30 360°/ 28 0xA4
gal (UK) 0x31
gal (US) 0x32 Resolution:
 Pixel 0xB0
Consumption:
l/100km 0x40
miles/gal 0x41
km/l 0x42

Table 2-9: Available units

Specification Document  Copyright 1999 - 2005 MOST Cooperation

 Page 83

MOST®
Specification

MOST Specification 05/2005

2.3.11.1.3 Function Class Text

OPType Parameters

Set String
Get
Status String

SetGet String

GetInterface
Interface Flags, Class, OPTypes, Name, MaxSize

Error ErrorCode, ErrorInfo

MaxSize: Uns. Byte Maximum length of string

Specification Document  Copyright 1999 - 2005 MOST Cooperation
Page 84

MOST®
Specification

MOST Specification 05/2005

2.3.11.1.4 Function Class Enumeration

OPType Parameters

Set Pos
Get
Status Pos

SetGet Pos

Increment NSteps
Decrement NSteps

GetInterface
Interface Flags, Class, OPTypes, Name, Size, Name1, Name2,...

Error ErrorCode, ErrorInfo

Size: Uns. Byte Length of enumeration

0 = no element
1 = one element
2 = two elements....

Name x: Null terminated string, representing the name of element x

Pos: Uns. Byte Number of active element or of element to be activated

Please Note:
Increment and Decrement must be interpreted like Predecessor and Successor in common
programming languages.

Specification Document  Copyright 1999 - 2005 MOST Cooperation

 Page 85

MOST®
Specification

MOST Specification 05/2005

2.3.11.1.5 Function Class BoolField

OPType Parameters

Set Content
Get
Status Content

SetGet Content

GetInterface
Interface Flags, Class, OPTypes, Name, DataType, NElements, BitName, BitSize, BitName, BitSize, ...

Error ErrorCode, ErrorInfo

Content: Uns. Byte Data area, containing e.g., flags
 Uns. Word
 Uns. Long

NElements: Uns. Byte Number of Elements in the BoolField

BitName: String Null terminated string, indicating the name of the
 respective element

BitSize: Uns. Byte Number of Bits required for encoding the element. Encoding
 starts at the LSB.

If a variable of Class BoolField is defined, a field of either 8bits, 16bits, or 32bits will be reserved.
Using the flags starts at the LSB. The value 0b**** ***0 means false and 0b**** ***1 means true.
Manipulating a BoolField always requires the writing of the entire variable.

Example:
This example shows a BoolField based on "unsigned Word". There are 11 bits used for representing
some flags. Please note, that it is also possible to combine several bits for representing a special
element (flag).

 B Y T E 1 B Y T E 0
D 7 D 6 D 5 D 4 D 3 D 2 D 1 D 0 D 7 D 6 D 5 D 4 D 3 D 2 D 1 D 0

 F. 10 F. 9 F. 8 F. 7 F. 6 F. 5 F. 4 F. 3 F. 2 F. 1 F. 0

Specification Document  Copyright 1999 - 2005 MOST Cooperation
Page 86

MOST®
Specification

MOST Specification 05/2005

2.3.11.1.6 Function Class BitSet

OPType Parameter

Set SetOfBits
Get
Status SetOfBits

SetGet SetOfBits

GetInterface
Interface Flags, Class, OPTypes, Name, Size

Error ErrorCode, ErrorInfo

Size: Uns. Byte Size of SetOfBits (Mask + Data) in Bytes

SetOfBits: BitField

BitSet in Arrays and Records:

A BitSet represents one variable. That means it is addressable as an entity via one dedicated value of
Pos.

Example:

MyArray = Array of BitSet: XXXX XXXX,0100 1001
 XXXX XXXX,1110 0011
 XXXX XXXX,0010 1101
 XXXX XXXX,0111 1111

Requesting Status report (1):

MyArray.Get (PosX=0x0)

Answer:

MyArray.Status (PosX=0x0, XXXX XXXX,0100 1001,
 XXXX XXXX,1110 0011,
 XXXX XXXX,0010 1101,
 XXXX XXXX,0111 1111)

Requesting Status report (2):

MyArray.Get (PosX=0x2)

Answer:

MyArray.Status (PosX=0x2, XXXX XXXX,1110 0011)

Specification Document  Copyright 1999 - 2005 MOST Cooperation

 Page 87

MOST®
Specification

MOST Specification 05/2005

Performing a Set operation (1):
MyArray.Set (PosX=0x0, 1000 0001,1000 0001,
 1000 0001,1000 0001,
 1000 0001,0111 1110,
 1000 0001,0111 1110)

Result:
MyArray = XXXX XXXX,1100 1001
 XXXX XXXX,1110 0011
 XXXX XXXX,0010 1100
 XXXX XXXX,0111 1110

Performing a Set operation (1):
MyArray.Set (PosX=0x4, 1111 0000,1000 0001)

Result:
My Array = XXXX XXXX,1000 1001
 XXXX XXXX,1110 0011
 XXXX XXXX,0010 1100
 XXXX XXXX,1000 1110

Specification Document  Copyright 1999 - 2005 MOST Cooperation
Page 88

MOST®
Specification

MOST Specification 05/2005

2.3.11.1.7 Function Class Container

OPType Parameter
Set Classified Stream

Get Classified Stream

Status Classified Stream

SetGet Classified Stream

GetInterface

Interface Flags, Class, OPTypes, Name, MaxLength

Error ErrorCode, ErrorInfo

The Function Class Container is used for objects that can’t be described in a satisfying way by the
other structures.

MaxLength: Unsigned Word MaxLength indicates the max size of the stream in Bytes.

Specification Document  Copyright 1999 - 2005 MOST Cooperation

 Page 89

MOST®
Specification

MOST Specification 05/2005

2.3.11.2 Properties with Multiple Parameters

Some functions contain multiple parameters. Here the principle should be to only combine functions
that are very similar in nature (e.g., Station name and PI). Parameters that do not match like that
should be modeled in separate functions (e.g., Station name and current frequency).

Functions with multiple parameters can also be assigned to classes called array and record. In an
array, parameters are of the same type, in a record they are of different types. It is possible to build
an array of records, or a record containing an array. Such “two dimensional” constructs are allowed.

More complex constructs whose dimension exceeds two (array of array of record, or a record with two
arrays) are definitely not allowed. In addition to that, it is not allowed to reference other functions from
within a function. This means that an interface description of a function must not reference the
interface descriptions of other functions. A function must be described completely and independent of
other functions.

Function class Explanation

Record Properties of this class contain a variable of a composite type. It may consist
of any number of single properties.

Array Properties of this class contain only elements of the same type.

Dynamic Array Properties of this class use a more dynamic approach than ordinary Arrays.

Long Array Properties of this class are used to handle large arrays in a sophisticated way.

Sequence
Property

Properties of this class contain a number of single properties of the same
kind.

Table 2-10: Classes of functions with a multiple parameters.

Specification Document  Copyright 1999 - 2005 MOST Cooperation
Page 90

MOST®
Specification

MOST Specification 05/2005

2.3.11.2.1 Function Class Record

OPType Parameters

Set Position, Data
Get Position
Status Position, Data

SetGet Position, Data

Increment Position, NSteps
Decrement Position, NSteps

GetInterface
Interface Flags, Class, Name, NElements, IntDesc1, IntDesc2...

Error ErrorCode, ErrorInfo

In the interface description of a record, the OPTypes are omitted, since they are not necessarily
identical for all parameters. OPTypes are therefore relevant only in basic types.

NElements Uns. Byte Number of elements in Record

IntDescX are the interface descriptions of the single elements. Depending on the data type, one of
the interface descriptions defined for the respective class can be inserted. Please note that here in
case of elements, parameter Flags is not available. In case of OPTypes (internal OPTypes here) only
Set, Get, Status, Increment, Decrement and Error can be used.

Please note:
IntDesc only represents a group of parameters. No referencing of other functions and their
interface descriptions is done here!

Below, IntDesc is displayed with respect to the basic classes:

Class IntDesc
Switch Class, OPTypes, Name
Number Class, OPTypes, Name, Units, DataType, Exponent, Min, Max, Step
Text Class, OPTypes, Name, MaxSize
Enumeration Class, OPTypes, Name, Size, Name1, Name2,...
BoolField Class, OPTypes, Name, DataType, NElements, BitName, BitSize, BitName, BitSize, ...
BitSet Class, OPTypes, Name, Size
Array Class, Name, NElements, IntDesc

Position always consists of two Bytes, and indicates what will be set, requested, or read in the record.
The first Byte (x) indicates the position of an element in the record. If the record contains an array
(two dimensions), the second Byte specifies the line in the array. On:

• x=y=0,
the operation is related to the entire record.

• x=(Position of array in record) AND y>0,
the operation is related to a “line” in the array.

• x=(Position of array in record) AND y=0,
the operation is related to the entire array.

• x<>(Position of array in record) AND y=0,
the operation is related to the respective element in the record.

Even if the record does not contain an array, the position consists of two Bytes, but the second Byte is
not used in this case.

Specification Document  Copyright 1999 - 2005 MOST Cooperation

 Page 91

MOST®
Specification

MOST Specification 05/2005

Record R1

x 1

R2

2

R3

3

R4

4

R5

5

Record R1

x 1

R2

2

R3

3

R4
A1

4

R5

5

Array y

A2

A3

1

2

3

Figure 2-32: Meaning of position x in record (above) and of position y in a record with array (below)

Data represents data according to the structure of the record, and the specifications by position.

Specification Document  Copyright 1999 - 2005 MOST Cooperation
Page 92

MOST®
Specification

MOST Specification 05/2005

2.3.11.2.2 Function Class Array

OPType Parameters

Set Position, Data
Get Position
Status Position, Data

SetGet Position, Data

Increment Position, NSteps
Decrement Position, NSteps

GetInterface
Interface Flags, Class, Name, NMax, IntDesc

Error ErrorCode, ErrorInfo

Function class Array is very similar to Record. NMax, of type Unsigned Byte, represents the
maximum number of elements. Since the array contains only elements of the same type, there only
needs to be one IntDesc of the following type:

Class IntDesc
Switch Class, OPTypes, Name
Number Class, OPTypes, Name, Units, DataType, Exponent, Min, Max, Step
Text Class, OPTypes, Name, MaxSize
Enumeration Class, OPTypes, Name, Size, Name1, Name2,...
BoolField Class, OPTypes, Name, DataType, NElements, BitName, BitSize, BitName, BitSize, ...
BitSet Class, OPTypes, Name, Size
Array Class, Name, NElements, IntDesc
Record Class, Name, NElements, IntDesc1, IntDesc2...

Analogous to the determinations of a record, the following is valid here for an array:

Record

y

A1

Arrayx

A2

A3

1

2

3

A44

A55

A1
R1

Arrayx

1

2

3

4

5

R2

2

R3

31

R2 R3

R2 R3

R2 R3

R2 R3

A2
R1

A3
R1

A4
R1

A5
R1

Figure 2-33: Position x in case of an array of basic type (left), y in case of an array of record (right)

As in the case of a record, Position always consists of two Bytes, independent of whether the array
contains a record or not. If there is no record, the second Byte is not used.

Specification Document  Copyright 1999 - 2005 MOST Cooperation

 Page 93

MOST®
Specification

MOST Specification 05/2005

Please note:
The first parameter x (first Byte) always refers to the outer structure, that is, the array for an
Array of Record, and the record for a Record with Array.

If a partial structure is transmitted by using Position, the sending device is responsible for keeping
consistency with the general structure transmitted before. As an example, the AM/FMTuner may
update the signal qualities in a station list that was transferred earlier. It must take care to make sure
that the signal quality values are assigned to the correct stations.

Transmitting an array is the only time when it is possible to transmit fewer elements than the maximum
number of elements (NMax entry in the function interface FI). As an example, on 10 receivable
stations the entire list of perhaps 100 possible entries does not need to be transferred. It must be kept
in mind that each individual element of the array must always be transferred completely. If not, an
error is assumed. The specification of the length is done in parameter Length of the application
protocol.

If an array is empty, the status is reported without data:

FBlockID.InstID.Array.Status (PosX=0x00, PosY=0x00)

Examples:

Disk information in CD changer:

The CD changer contains a magazine of up to 10 CDs. Each disk contains several tracks. The
information is modeled in the two properties Magazine and Disk.

Magazine = Array[1..10] of Record of

 DiskTitle: String (Text)
 TotalTime: Int (Number)
 NTracks: unsigned Byte (Number)

If a disk is not available, this can be recognized by TotalTime and NTracks containing 0x00. When
requesting the FI, the formal answer is:

AudioDiskPlayer.0.Magazine.Interface

(Flags. Class. Name. NMax. Array of
 Class. Name. NElements. Record of
 Class. OPTypes. Name. MaxSize Text
 Class. OPTypes. Name. Units, DataType, Exponent, Min, Max, Step Number
 Class. OPTypes. Name. Units, DataType, Exponent, Min, Max, Step) Number

or more related to the contents:

AudioDiskPlayer.0.Magazine.Interface

 (Flags. Array. “Magazine“, 0A
 Record. “DiskInfo“, 03
 Text. OPTypes. “DiskTitle“, FF
 Number. OPTypes. “TotalTime“. Seconds. Word. 00. 00 00. FF FF. 00 01
 Number. OPTypes. “Tracks“. 00. Unsigned Byte. 00. 01. 63. 01)

Specification Document  Copyright 1999 - 2005 MOST Cooperation
Page 94

MOST®
Specification

MOST Specification 05/2005

On request

Controller -> CDC: AudioDiskPlayer.0.Magazine.Get (03. 01)

one receives the title of the third disk. On request

Controller -> CDC: AudioDiskPlayer.0.Magazine.Get (00. 01)

the titles of all disks are returned.

Disk = Array[1..99] of Record of

 TrackTitle: String (Text)
 TrackTime: Unsigned Byte (Number)

On requesting the FI, the formal answer is:

AudioDiskPlayer.0.Disk.Interface

(Flags. Class. Name. NMax. Array of
 Class. Name. NElements. Record of
 Class. OPTypes. Name. MaxSize Text
 Class. OPTypes. Name. Units, DataType, Exponent, Min, Max, Step) Number

or more related to the contents:

AudioDiskPlayer.0.Magazine.Interface

 (Flags. Array. “Disk“, 63
 Record. “TrackInfo“, 02
 Text. OPTypes. “TrackTitle“, FF
 Number. OPTypes. “TotalTime“. Seconds. Word. 00. 00 00. FF FF. 00 01

Selecting In Arrays:

In many arrays, lines will be selected. Here, selections “1 of n” (one single line selected only) need to
be differentiated from selections “n of N” (several lines can be selected at the same time).

• n of N:

The selection here should be done by an individual parameter Selected of type Switch, which is
used as prefix (Array of record of {Selected, ...}). The change in the status of the switch can be
modified by Controller or Slave either single (Selected of a single line), or for an entire column
(Selected of all lines). In principle this kind of selection can be used in case of 1 of N as well.

• 1 of N:

In case of 1 of N there is an alternative modeling which is less expensive with respect to
communication than n of N. Here a property Selected is modeled, which points onto the selected
line. The kind of pointer differs individually. So e.g., in case of station lists the pointer may point
onto the PI of the station currently active. In other cases, the position may be more effective. This
way can be very effective, if a single line shall be selected in several Arrays (e.g., an entry in all
telephone directories).

Specification Document  Copyright 1999 - 2005 MOST Cooperation

 Page 95

MOST®
Specification

MOST Specification 05/2005

2.3.11.2.3 Function Class Dynamic Array

The arrays described above are optimized with respect to a high data volume. Navigation is based on
the fixed sequence of elements in the array (Position = PosX, PosY). The position will not be
contained in the data field. In Dynamic Arrays this is not possible, since here, lines can be inserted or
removed (the sequence may vary). So a special function class DynamicArray is introduced, where
PosX will be replaced by a uniquely defined handle, the Tag of data type Unsigned Word. It is defined
as first parameter in the record:

DynamicArray = Array of Record of {Tag, ...}

For function class DynamicArray, the protocols are defined as follows:

OPType Parameter

Set Tag, PosY, Data
Get Tag, PosY
Status Tag, PosY, Data

SetGet Tag, PosY, Data

Increment Tag, PosY, NSteps
Decrement Tag, PosY, NSteps

GetInterface
Interface Refer to section 2.3.11.2.2 on page 92

Error ErrorCode, ErrorInfo

Tag uns. Word = 0x00 00 all lines

 <> 0x00 00 one special line

PosY uns. Byte <> 0x00 one special column (only if Tag <> 0x00 00)

 = 0x01 not allowed, no access to Tag

Please note:
The Tag belongs to the data field. This means that it is returned at the start of every line.
PosY = 0x01 denotes the Tag. With respect to consistency, accesses to a column are not
reasonable. The last line in a Dynamic Array indicates the end. It starts with Tag 0xFFFF and
contains dummy data. This line is included within the NMax counter.

Specification Document  Copyright 1999 - 2005 MOST Cooperation
Page 96

MOST®
Specification

MOST Specification 05/2005

Examples for positioning:

1. Array of Record of {Tag, El1, El2, El3}

2. Tag = 0x00 00 and PosY = 0x00

3. Tag = 0x20 06 and PosY = 0x00

4. Tag = 0x6389 and PosY = 3

 (1) (2) (3) (4)
Tag El1 El2 El3 Tag El1 El2 El3 Tag El1 El2 El3 Tag El1 El2 El3

0356 0356 0356 0356
3467 3467 3467 3467
3624 3624 3624 3624
2006 2006 2006 2006
0101 0101 0101 0101
6389 6389 6389 6389
0900 0900 0900 0900
3581 3581 3581 3581
9023 9023 9023 9023
FFFF FFFF FFFF FFFF

Editing In DynamicArrays:

Like in case of simple arrays, data contents can be modified by using Set. In many cases this is
sufficient for DynamicArrays as well. Especially if the inserting and deleting of lines is done within the
Slave only. If the inserting and deleting of lines is done by the controller as well, more complex editing
functions are required. They will be defined as separate methods. Below there are two examples,
which are defined in a way, that they can be applied to several DynamicArrays (FktIDs), e.g., several
telephone directories. So there is no need for an individual instance per array. So these functions will
be placed in the range of Coordination (0x000..0x1FF).

By DynArrayIns (FktID=0x080), a number Quantity (Uns. Word) of array elements (entire lines) will be
inserted in DynamicArray FktID. The lines will be inserted after that line containing Tag. The data
contents of the lines to be inserted will be transferred as Data.

DynArrayIns.Start (FktID, Tag, Quantity, Data)

DynArrayDel (FktID=0x081) deletes a number Quantity (Uns. Word) of array elements (entire lines).
This is performed starting at the element containing Tag, which is included within deletion.

DynArrayDel (FktID, Tag, Quantity)

Examples:

DynArrayDel (FktID, 00 00, FF FF) Deleting of entire array
DynArrayDel (FktID, 87 95, FF FF) Deleting of entire array starting at line containing Tag 0x8795
DynArrayDel (FktID, 87 95, 00 01) Deleting of the line containing Tag 0x8795
DynArrayDel (FktID, 87 95, 00 00) No deleting

Specification Document  Copyright 1999 - 2005 MOST Cooperation

 Page 97

MOST®
Specification

MOST Specification 05/2005

2.3.11.2.4 Function Class LongArray

A Slave transfers the arrays and DynamicArrays (as described above) to the registered controller
using shadows. In case of changes, the shadows then will be updated. In case of big arrays that are
changed very often, this may not be practicable any longer (Amount of memory in Controller,
transmission time, bus load). Here another model – LongArray – must be applied. Where to place the
boundary between LongArray and DynamicArray, is a matter of an individual decision.

The class LongArray consists of a function MotherArray and a function class ArrayWindow. It is
possible to generate instances of class ArrayWindow dynamically. An ArrayWindow represents an
extract, a window to the MotherArray. An instance of LongArray therefore consists of at minimum two
functions, so LongArray is no simple function class.

2.3.11.2.4.1 MotherArray
The MotherArray is structured like a function of class DynamicArray. So communication of
DynamicArray is identical to the communication of MotherArray, but there are only the OPTypes
GetInterface, Interface and Error available (refer to section 2.3.11.2.2 on page 92).

The main difference compared to DynamicArray is, that the MotherArray is not controlled and viewed
directly, but via one or more different functions. In the function interface of the MotherArray, all
OPTypes are listed that can be executed via ArrayWindows. Below there is an example for a
MotherArray as Array of Record of {Tag, Character, Number}:

Tag El 1 El 2

6243 a 01
2100 b 02
5428 c 03
0101 d 04
3245 e 05
4562 f 06
0012 g 07
5342 h 08
9473 i 09
9343 j 0A
8367 k 0B
3752 l 0C
7698 m 0D
 .
 .
 .
6354 x 1E
3425 y 1F
1045 z 20
FFFF FF FF

Specification Document  Copyright 1999 - 2005 MOST Cooperation
Page 98

MOST®
Specification

MOST Specification 05/2005

2.3.11.2.4.2 ArrayWindow
The ArrayWindow represents a part of the MotherArray. One main difference to other function classes
is, that it is not useful to instantiate an ArrayWindow in a static way (via the FBlock Specification). In
other function classes, where functions are instantiated in a static way, those functions describe fixed
properties and methods of the Slave. Their state is identical for all controllers. With respect to its
status, an ArrayWindow is strongly bound to a Controller. So there must be an individual
ArrayWindow for each Controller. So it is possible that several HMIs have individual ArrayWindows to
an address directory (MotherArray), which have different size and position.

So functions of class ArrayWindow are instantiated dynamically at runtime. Therefore a function block
(that has a MotherArray, which shall be accessed by ArrayWindows) must provide a method
CreateArrayWindow for instantiation, and a method DestroyArrayWindow (both of class Unclassified
Method). The FktID is used as instance handle, which is transferred from Slave to Controller during
instantiation.

Function OPTypes Parameter

CreateArrayWindow StartResultAck SenderHandle, FktIDMotherArray, PositionTag, WindowSize
 ResultAck SenderHandle, FktIDArrayWindow
 ErrorAck SenderHandle, ErrorCode, ErrorInfo

DestroyArrayWindow StartResultAck SenderHandle, FktIDArrayWindow
 ResultAck SenderHandle
 ErrorAck SenderHandle, ErrorCode, ErrorInfo

FktIDMotherArray FktID of the MotherArray. It is not dynamic, since MotherArray is a property of class
 DynamicArray of the Slave

FktIDArrayWindow FktID of the ArrayWindow. It is generated dynamically and represents the object handle,
 which is transferred during instantiation. A range for such dynamically generated FktIDs
 is occupied in advance.

PositionTag uns. Word Top left corner of the ArrayWindow is positioned at PositionTag

WindowSize uns. Byte Number of elements contained by the ArrayWindow

The methods CreateArrayWindow and DestroyArrayWindow can instantiate and destroy
ArrayWindows even of several MotherArrays. If e.g., in a telephone all telephone directories are
available as MotherArrays, every HMI that is interested in a telephone directory may instantiate an
ArrayWindow for the respective MotherArray. So it can be that e.g., three telephone directories may
be watched by three ArrayWindows.

If a device enters sleep mode, all instances of ArrayWindows are destroyed. Every Controller stores
the position of its ArrayWindow with the help of the Tag of the first line. During CreateArrayWindow,
and by the help of Move (FktIDArrayWindow, Absolute, Tag), the window can be positioned again.

The status of an ArrayWindow is kept up to date in the Controller by using a shadow. Also in that
case, it is the Slave’s task to keep the shadow up to date. A creation of an ArrayWindow implies a
notification on that ArrayWindow without the need of sending a notification set message. For each
ArrayWindow there is only one single shadow, which is located in the Controller that has instantiated
it. The DeviceID of the Controller is transferred to the Slave during instantiation, so there is no need to
implement a special notification mechanism for registering the controller.

Specification Document  Copyright 1999 - 2005 MOST Cooperation

 Page 99

MOST®
Specification

MOST Specification 05/2005

By using the ArrayWindow, editing the MotherArray can be done in the conventional way:

ArrayWindow.SetGet (Tag, PosY, Data)

Tag El 1 El 2

6243 a 01
2100 b 02
5428 c 03
0101 d 04
3245 e 05
4562 f 06
0012 g 07 0012 g 07 0012 g 07
5342 h 08 5342 h 08 5342 h 08
9473 i 09 9473 i 09 9473 i B3
9343 j 0A 9343 j 0A 9343 j 0A
8367 k 0B 8367 k 0B 8367 k 0B
3752 l 0C
7698 m 0D

 .
 .
 .

6354 x 1E
3425 y 1F
1045 z 20
FFF FF FF

MotherArray ArrayWindow SetGet (9473, 03, B3)

There is no function interface for an ArrayWindow, since it only represents a “view” onto the
MotherArray. The MotherArray itself has a function interface that describes all operations that can be
performed by using an ArrayWindow.

Function OPType Parameter

ArrayWindow Set Tag, PosY, Data
 Get Tag, PosY
 Status Tag, PosY, CurrentSize, AbsolutPosition, Data

 SetGet Tag, PosY, Data

 Increment Tag, PosY, NSteps
 Decrement Tag, PosY, NSteps

 GetInterface
 Interface Refer to section 2.3.11.2.2 on page 92

 Error ErrorCode, ErrorInfo

Tag Uns. Word = 0x00 00 all lines
 <> 0x00 00 one special line

PosY Uns. Byte <> 0x00 one special column (only if Tag <> 0x00 00)
 = 0x01 not allowed, no access to Tag

CurrentSize Uns. Word <> current size of the MotherArray

AbsolutPosition Uns. Word <> absolute position of the Array Window in the Mother Array. The value
 specifies the position of the top left cell in the MotherArray and the
 counting starts at 0.)

Specification Document  Copyright 1999 - 2005 MOST Cooperation
Page 100

MOST®
Specification

MOST Specification 05/2005

2.3.11.2.4.3 Positioning an ArrayWindow on a MotherArray
Since an ArrayWindow represents an extract of the MotherArray, it must be positioned on the
MotherArray in an appropriate way. Therefore two methods are defined. Method MoveAW is
mandatory. An instance of MoveAW is used for all instances of ArrayWindows (FktID) of a function
block.

MoveAW.Start (FktID, Mode, Number, Tag}

FktID FktID of the ArrayWindow to be moved

Mode uns. Byte 00 Top
 01 Bottom
 02 Up
 03 Down
 04 Absolute

Top and Bottom:

Top and Bottom move the ArrayWindow to the start, or the end of the MotherArray respectively. The
parameters Number and Tag are transferred as well but they are not used in this mode.

Tag El 1 El 2

6243 a 01 6243 a 01
2100 b 02 2100 b 02
5428 c 03 5428 c 03
0101 d 04 0101 d 04
3245 e 05 3245 e 05
4562 f 06
0012 g 07 0012 g 07
5342 h 08 5342 h 08
9473 i 09 9473 i 09
9343 j 0A 9343 j 0A
8367 k 0B 8367 k 0B
3752 l 0C
7698 m 0D

 .
 .

9643 w 1D 9643 w 1D
6354 x 1E 6354 x 1E
3425 y 1F 3425 y 1F
1045 z 20 1045 z 20
FFF FF FF FFFF FF FF

MotherArray ArrayWindow MoveAW.Start (FktID, Top, xx, xxxx)

 MoveAW.Start (FktID, Bottom, xx, xxxx)

Specification Document  Copyright 1999 - 2005 MOST Cooperation

 Page 101

MOST®
Specification

MOST Specification 05/2005

Up and Down:

Up and Down are used for relative movement of the ArrayWindow, where the parameter Number
(Uns. Byte) defines the number of lines by which the ArrayWindow shall be moved. If the
ArrayWindow is moved to a position that is outside of the MotherArray it will be positioned at the
closest point within the MotherArray. This means that it will be positioned at the Top or Bottom position
depending on whether it was an Up or a Down command that tried to move it. No error will be
reported.

Tag El 1 El 2

6243 a 01
2100 b 02
5428 c 03
0101 d 04 0101 d 04
3245 e 05 3245 e 05
4562 f 06 4562 f 06
0012 g 07 0012 g 07 0012 g 07
5342 h 08 5342 h 08 5342 h 08
9473 i 09 9473 i 09 9473 i 09
9343 j 0A 9343 j 0A 9343 j 0A
8367 k 0B 8367 k 0B 8367 k 0B
3752 l 0C 3752 l 0C
7698 m 0D 7698 m 0D

 .
 .
 .

6354 x 1E
3425 y 1F
1045 z 20
FFF FF FF

MotherArray ArrayWindow MoveAW.Start (FktID, Up, 03, xxxx)

 MoveAW.Start (FktID, Down, 05, xxxx)

Specification Document  Copyright 1999 - 2005 MOST Cooperation
Page 102

MOST®
Specification

MOST Specification 05/2005

Absolute:

Absolute adjusts an ArrayWindow in a way, that the first line contains the desired Tag. If the Tag
located too far by the end of the MotherArray, so that the ArrayWindow would exceed the valid range,
the ArrayWindow will be placed like in case of using Bottom.

Tag El 1 El 2

6243 a 01
2100 b 02 2100 b 02
5428 c 03 5428 c 03
0101 d 04 0101 d 04
3245 e 05 3245 e 05
4562 f 06 3245 f 06
0012 g 07 0012 g 07
5342 h 08 5342 h 08
9473 i 09 9473 i 09
9343 j 0A 9343 j 0A
8367 k 0B 8367 k 0B
3752 l 0C
7698 m 0D

 .
 .
 .

6354 x 1E
3425 y 1F
1045 z 20
FFF FF FF

MotherArray ArrayWindow MoveAW.Start (FktID, Absolute, xx, 2100)

Specification Document  Copyright 1999 - 2005 MOST Cooperation

 Page 103

MOST®
Specification

MOST Specification 05/2005

The second method SearchAW is optional. SearchAW provides a seeking of Searchstring in
MotherArray through ArrayWindow (FktID). Search is performed in that element of each line, which is
specified by PosY:

SearchAW.Start (FktID, PosY, Searchstring)

Seeking starts from the first line of ArrayWindow and runs down to the end of the MotherArray. Then
seeking continues automatically at the start of the MotherArray and ends at the first line of the
ArrayWindow. In case of success, the first line of the ArrayWindow is positioned onto the first line of
the MotherArray, which contains Searchstring. In case of failure, an error is reported (ErrorCode 0x07
“parameter not available”).

Tag El 1 El 2

6243 a 01
2100 b 02
5428 c 03 5428 c 03
0101 d 04 0101 d 04
3245 e 05 3245 e 05
4562 f 06 4562 f 06
0012 g 07 0012 g 07 0012 g 07
5342 h 08 5342 h 08
9473 i 09 9473 i 09
9343 j 0A 9343 j 0A
8367 k 0B 8367 k 0B
3752 l 0C
7698 m 0D

 .
 .
 .

6354 x 1E
3425 y 1F
1045 z 20
FFF FF FF

MotherArray ArrayWindow SearchAW.Start (FktID, 02, „c“)

2.3.11.2.4.4 Re-Synchronization of ArrayWindows
Each device containing one or several LongArrays must offer the property LongArrayInfo to its
controllers. One instance of this property services all LongArrays present in the node. The purpose of
this property is to enable controllers to re-synchronize after a system error. By this property controllers
can see if the ArrayWindows they created before still exists. It works like a normal array except that it
is only possible to do Get on it.

Specification Document  Copyright 1999 - 2005 MOST Cooperation
Page 104

MOST®
Specification

MOST Specification 05/2005

2.3.11.2.5 Function Class Sequence Property

OPType Parameters

Set <Parameter>{, <Parameter>}
Get
Status <Parameter>{, <Parameter>}

SetGet <Parameter>{, <Parameter>}

GetInterface
Interface Flags, Class, Name, NElements, IntDesc1, IntDesc2...
Error ErrorCode, ErrorInfo

NElements Uns. Byte Number of elements in Function Class Sequence Property

IntDescX are the interface descriptions of the single elements. Depending on the data type, one of
the interface descriptions defined for the respective class can be inserted. Please note that here in
case of elements, parameter Flags is not available. In case of OPTypes (internal OPTypes here) only
Set, Get, Status, Increment, Decrement and Error can be used.

Specification Document  Copyright 1999 - 2005 MOST Cooperation

 Page 105

MOST®
Specification

MOST Specification 05/2005

2.3.11.3 Function Classes for Methods

For methods there are only two function classes, since methods may differ significantly with respect to
the parameters transferred during Start and Result (in opposite to properties). Methods that do not
belong to these classes belong to class “unclassified method”. They must be defined in a specific
way.

Function class Explanation

Trigger Method This kind of method is used to trigger something. They have no parameters.

Sequence
Method

This kind of method has a number of parameters, all of the same kind.

Unclassified
Method

Methods that do not belong to any classified function class belong here.

Table 2-11: Classes of functions for a method.

2.3.11.3.1 Function Class Trigger Method

There are no parameters in case of Start/ StartResult, and it does not return parameters in case of
Result or Processing.

OPType Parameter

Start
Processing
Result

StartResult

StartResultAck SenderHandle
ProcessingAck SenderHandle
ResultAck SenderHandle
ErrorAck SenderHandle, ErrorCode, ErrorInfo

GetInterface
Interface Flags, Class, OPTypes, Name

Error ErrorCode, ErrorInfo

Specification Document  Copyright 1999 - 2005 MOST Cooperation
Page 106

MOST®
Specification

MOST Specification 05/2005

2.3.11.3.2 Function Class Sequence Method

OPType Parameter

Start <Parameter>{, <Parameter>}
Processing
Result <Parameter>{, <Parameter>}

StartResult <Parameter>{, <Parameter>}
StartResultAck <Parameter>{, <Parameter>}
ProcessingAck
ResultAck <Parameter>{, <Parameter>}

Abort

GetInterface
Interface Flags, Class, Name, Nelements, IntDesc1, InDesc2, …

ErrorAck ErrorCode, ErrorInfo
Error ErrorCode, ErrorInfo

NElements Uns. Byte Number of elements in Function Class Sequence Method

IntDescX are the interface descriptions of the single elements. Depending on the data type, one of
the interface descriptions defined for the respective class can be inserted. Please note that here in
case of elements, parameter Flags is not available.

Specification Document  Copyright 1999 - 2005 MOST Cooperation

 Page 107

MOST®
Specification

MOST Specification 05/2005

2.3.12 Handling Message Notification

In many cases, HMIs and controllers must get information about values reaching their maximum or
about changes of properties in other function blocks. To avoid polling, events for automatic
notification are defined. Such events must often be sent to several devices (e.g., two HMIs). Because
of that, a notification matrix is implemented in every function block. The devices that should be
notified of changes to the status of a function are registered in this matrix.

Please note:
Only properties can be admitted to the notification matrix!

Entry Fkt
1

Fkt
2

Fkt
3

Fkt
4

Fkt
5

DeviceID1 x x x x x
DeviceID2 x x
Free for entry
Free for entry
Free for entry
Free for entry

Table 2-12: Notification matrix (x = notification activated)

The size of a notification matrix depends on the function block, on the number of properties, and on
the number of device entries, each of which must be registered individually.

When taking into consideration that a DeviceID has 16bits, a FktID has 12bits, and that in some
function blocks possibly all 64 possible nodes of the network must be registered, the notification matrix
may be very big. Nevertheless, the following subjects should be kept in mind:

• The notification matrix is only a model. It does not dictate the software implementation
method.

• Implementation may be done in very economical ways, e.g., by pointers in every function
object, that point to DeviceIDs.

• In most cases it is sufficient if the notification matrix has only a few entries.

• Group addresses are allowed as DeviceID in the notification matrix.

For very simple function blocks, for example, a CD changer, it is sufficient if the notification matrix
provides only three entries for DeviceIDs. A very efficient implementation is possible. For example,
by using a group address, all HMIs in the network can be notified of status changes.

Administration of the notification matrix is done via function Notification. If a controller desires to
register, or to remove registration, it sends the following protocol:

Controller -> Slave: FBlockID.InstID.Notification.Set (Control, DeviceID,
 FktID1, FktID2...)

Specification Document  Copyright 1999 - 2005 MOST Cooperation
Page 108

MOST®
Specification

MOST Specification 05/2005

The DeviceID of the controller is transported at the start of the protocol, as described in section 2.3.5
on page 63, but in order to enter group addresses, the DeviceID is transmitted in the parameter field
as well. Parameter Control specifies where the entry or deletion is done:

Control Name Comment
0x0 SetAll Entry is done for all functions
0x1 SetFunction Entry is done for the following functions (maximum is 4)
0x2 ClearAll DeviceID of controller is deleted for all functions
0x3 ClearFunction DeviceID of controller is deleted for the specified functions (maximum is 4)
Rest Reserved

Table 2-13: Parameter Control

On SetFunction and ClearFunction, at most 4 FktIDs can be specified (16 bits each), to avoid
exceeding the maximum data length of 12 Bytes of a MOST telegram.

In the table below, the protocols with the different controls for making entries in the notification matrix
are listed together with the respective resulting entries.

Protocol Entry Fkt

1
Fkt
2

Fkt
3

Fkt
4

Fkt
5

Notification.Set (SetAll, DeviceID1) DeviceID1 x x x x x
Notification.Set (SetFunction, DeviceID2, FktID2, FktID4) DeviceID2 x x
 Free for entry
 Free for entry
 Free for entry
 Free for entry

Table 2-14: Protocols with different controls for making entries in the notification matrix, and the resulting entries.

Immediately after registration in the notification matrix, the controller receives the status reports of all
functions it has activated as events. If a double registering occurs, that is, a device registers that has
already been registered, the reports are sent as if the device has been registered for the first time.
This also applies to registering with group addresses.

Deleting entries is done in a similar way. Deletion of a not notified function shall not cause an error
message.

If a controller desires to read information from the notification matrix, it sends:

Controller -> Slave: FBlockID.InstID.Notification.Get (FktID)

In general, all "Report" OPTypes (Status, Error, and Interface) are notified. Status and (possibly) Error
are reported spontaneously after registration. Interface is not reported directly after registration.

As an answer to this request, a list is returned that contains all DeviceIDs, which activated the
respective FktID:

Slave -> Controller: FBlockID.InstID.Notification.Status (FktID,DeviceID1,
DeviceID2,..DeviceIDN)

Please note:
In case of array properties, only those elements that have been changed are sent as status
during notification.

Specification Document  Copyright 1999 - 2005 MOST Cooperation

 Page 109

MOST®
Specification

MOST Specification 05/2005

Error handling:

The Notification Service reports one of the following error messages, if any error occurred:

• No more registration possible
If no more registering is possible, function Notification answers:

Slave -> Controller: FBlockID.InstID.Notification.Error (0x20,0x01)

• FBlock not registered in the Notification Service
This happens when the corresponding FBlock is not registered in the Notification Service.

Slave -> Controller: FBlockID.InstID.Notification.Error (0x20,0x20)

• Device table full
The device table of the Notification Service is to small. This error may occur when using
pointers to DeviceIDs as mentioned above.

Slave -> Controller: FBlockID.InstID.Notification.Error (0x20,0x21)

• Notification set rejected
The corresponding properties (FktIDList) reject the ”Notification.Set” command, because of
a notification matrix overflow, or the property is not registered in the Notification Service.

Slave -> Controller: FBlockID.InstID.Notification.Error (0x20,0x10,
FktIDList)

• Notification get not possible
On a received ”Notification.Get” command, whenever the respective property is not registered
in the Notification Service, the following is reported:

Slave -> Controller: FBlockID.InstID.Notification.Error (0x07,0x01, FktID)

• No valid values or property failure
In case a controller registers at a time, where no valid values of the respective property are
available or a property becomes temporarily unavailable, Notification sends the following
message to all nodes that are registered for the respective property:

Slave -> Controller: FBlockID.InstID.FktId.Error (0x41)

This message is also sent, in case a node registers for the property after the problem
occurred. Failure of a whole function block is handled in section 3.2.5.5.

Please note:
For keeping the system flexible, and for optimizing the communication effort with respect to
the needs, the notifications are re-built at every system start (NetOn).

Specification Document  Copyright 1999 - 2005 MOST Cooperation
Page 110

MOST®
Specification

MOST Specification 05/2005

3 Network Section

3.1 MOST Network Interface Controller and its Internal
Services

The MOST Network Interface Controller provides extensive tools for operating the MOST bus simply
and safely, and for the transmission of data of different origins. Based on these tools, higher layers
are defined. The following sections give an overview of the features of the MOST Network Interface
Controller that are available for simplifying the definition of higher layers.

3.1.1 Bypass

If the bypass is closed, all signals received at the input of the MOST Network Interface Controller are
forwarded to the output of the MOST Network Interface Controller. In this state, the respective device
is “invisible” to the network. The device will be considered for the automatic counting of bus
components only after opening the bypass, which gives access to the bus.

After the MOST Network Interface Controller is reset, the all-bypass is closed. This allows a very fast
startup of the system, especially on usage of an optical wakeup mechanism. The all-bypass must be
opened by the controlling microcontroller after wakeup of the component.

3.1.2 Source Data Bypass

In order to put source data on the MOST Network, the source data bypass must be opened in the
device. That means that the source data is no longer passed through the MOST Network Interface
Controller without being processed (that is, not handled by the routing engine RE), but can be routed
now, e.g., from a source data port to the bus.

Based on the internal processing of data, a delay of two samples is added in the signal path. The
source data bypass should be opened only in devices that put source data onto the bus on runtime.

3.1.3 Master/Slave, Active and Passive Components

Basically, a MOST system consists of up to 64 nodes with identical MOST Network Interface
Controllers. By configuration, any of the MOST Network Interface Controllers can be the Timing
Master; all the others are slaves. The Timing Master provides generation and transporting of system
clock, the frames, and blocks. All Slave devices derive their clock from the MOST bus.

The Timing Master, as well as active Slave devices (source data bypass is open, device can put
source data on the bus) add two samples of delay to the path of source data.

A passive Slave device has a closed source data bypass. Since in that case the routing engine is
inactive, no delay is generated.

Specification Document  Copyright 1999 - 2005 MOST Cooperation

 Page 111

MOST®
Specification

MOST Specification 05/2005

3.1.4 Data Transport

The bit stream is optimized in such a way that processing is easy and maximum functionality is
supported. This includes mechanisms for automatic channel routing, network delay detection, and
burst data channel management.

The MOST network technology defines an intelligent bit stream, which is capable of providing all
MOST network features as described above.

Data is transferred in a continuous bi-phase encoded bit stream yielding more than a 24.8Mbps data
rate at a 44.1 kHz rate and a bit error rate of less than 10-10.

Since the MOST system is fully synchronous, with all devices connected to the bus being
synchronized to the bus, no memory buffering is needed (unlike isochronous, or asynchronous
devices). This keeps cost low.

The sample frequency in a MOST system can be chosen in a range between 30kHz and 50kHz. The
frequency depends directly on the application components. Some devices, for example, CD drives,
work at a device-specific sample rate. In systems optimized for cost, such devices are regarded as
fixed with respect to sample frequency. The sample frequency that is used most should be defined as
the system frequency, to avoid sample rate conversion in the different devices.

3.1.4.1 Blocks

Organization of data transfer in blocks of frames is required for network management and control data
transport tasks.

A block consists of 16 frames with 512 bits each. Per frame, 60 Bytes of data are available for source
data (synchronous and asynchronous packet data), while two Bytes transport control data. The 2
Bytes of 16 frames (1 block) are added to the control frame that transports a control telegram.

3.1.4.2 Frames

The MOST frame structure is designed in a way that provides maximum flexibility in terms of
compatibility with a number of existing communication and data transport requirements without any
drawbacks in implementation cost or processing overhead. It allows easy re-synchronization, clock
and data recovery with the highest data quality and integrity. Built-in structures allow simple network
management on the lowest layers avoiding overhead and cost shortcomings.

For synchronization, two different bus node types are required. A Timing Master that generates the
frames, and Slave devices that synchronize to the Master clock on the bus.

Specification Document  Copyright 1999 - 2005 MOST Cooperation
Page 112

MOST®
Specification

MOST Specification 05/2005

Frame = 512 bit = 22,67 micro-seconds @ 44.1 kHz Frame Rate

 Boundary Descriptor

 Preamble

Frame Control

Parity

Control
Frame

Synchronous Channel
Time Slots

Time Slot Available for
Asynchronous Transport

16 FRAMES = 1 BLOCK

Figure 3-1: Structure of blocks and frames on the MOST bus

The 64 Bytes (512 bits) wide frame has the following structure:

Table 3-1: Structure of the MOST frame

Byte Bit Task
0 0-3 Preamble
0 4-7 Boundary descriptor (synchronous area count value)

1 8-15 Data Byte 0
2 16-23 Data Byte 1
:
:

:
:

 :
 :

60 480-487 Data Byte 59

61 488-495 Control frame Byte 0
62 496-503 Control frame Byte 1

63 504-510 Frame control and status bits
63 511 Parity bit

Specification Document  Copyright 1999 - 2005 MOST Cooperation

 Page 113

MOST®
Specification

MOST Specification 05/2005

3.1.4.2.1 Preamble

The preambles are used internally to synchronize the MOST core and its internal functions to the bit
stream.

For synchronization to a frame, two different mechanisms are used for Slave and Master nodes. For a
Slave node, the first reception of valid preambles after reset, power-up, or loss of lock indicates that
phase lock on the input bit stream has been accomplished.

This method ensures that the Slave node is phase- and frequency-locked to the bit stream, and hence
the Master node. In a Master node, the transmitted bit stream is synchronized to an external timing
source such as a crystal oscillator, SCK, FSY, or S/PDIF source.

Once all the nodes in the network have locked to the master’s transmitted bit stream, the received bit
stream has the correct frequency, but will be phase shifted with respect to the transmitted bit stream.
This phase shift is due to delays from each active node, and additional accumulated delays due to
tolerances in the phase lock within the Slave nodes. The Master node re-synchronizes the received
data by the use of a PLL to lock onto the incoming bit stream, thereby re-synchronizing the incoming
data to the proper bit alignment.

3.1.4.2.2 Boundary Descriptor

The boundary descriptor provides a flexible way of changing the bandwidth for synchronous and
asynchronous data transmission. It represents the number of 4 Byte blocks (quadlets) of data used for
synchronous data. This value is used to determine the boundary between the synchronous and
asynchronous data areas in the frame. A count value of zero indicates no synchronous data and 15
quadlets of asynchronous data, while a count value of 15 indicates 15 quadlets of synchronous data
and no asynchronous data.

By this means, a 60 Byte data field can be allocated to either synchronous or asynchronous data on a
4 Byte resolution. As such, it can be optimized to different requirements, depending on the amount of
bandwidth required for each type of data.

Note that the maximum number of asynchronous data Bytes per frame is 36 Bytes, which means that
the boundary descriptor values can be between 6 and 15.

The boundary descriptor is managed by the Timing Master of a MOST Network. Please note that all
synchronous connections must be re-built after having changed the Boundary Descriptor.

3.1.4.2.3 MOST System Control Bits

All other bits within the frame are for management purposes on the network level. While the preamble
provides synchronization and clock regeneration, the parity bit indicates reliable data content and is
used for error detection and phase lock loop operation.

Specification Document  Copyright 1999 - 2005 MOST Cooperation
Page 114

MOST®
Specification

MOST Specification 05/2005

3.1.4.3 Source Data

3.1.4.3.1 Definition of Control Data and Source Data

Depending on the kind of data and bandwidth, the MOST system provides different transmission
procedures.

Telegrams for controlling devices or slow asynchronous data are transmitted via the control channel of
the MOST Network Interface Controller. For transmitting asynchronous data of higher bandwidth, a
packet-oriented asynchronous data area is available. Synchronous data, such as audio signals of a
CD drive, can be transmitted directly in the synchronous data area of the network. A more detailed
description of the different data areas can be found in the sections below.

3.1.4.3.2 Differentiating Synchronous and Asynchronous Data

Sixty data Bytes (15 quadlets) total are available for synchronous and asynchronous (packet) data.
The number of synchronous and asynchronous Bytes is specified by the boundary descriptor value
described above.

3.1.4.3.3 Source Data Interface

The MOST Network Interface Controller can handle a variety of different data formats at its source
data port. The source data port formats are controlled via the internal registers of the MOST Network
Interface Controller.

3.1.4.3.4 Transparent Channels

In addition to the different transmission procedures, the MOST Network provides a transparent
interface (transparent port). This port is over sampled (depending on the system’s sample rate, and on
the sampling rate chosen for the transparent port) and routed via the network. Therefore source data
port 1 is available. It provides, for example, the transparent transmission of a RS232 interface, i.e.,
without synchronizing RS232 to the bus.

If no transparent channel is required, source data port 1 can be used as a standard source data port.

Specification Document  Copyright 1999 - 2005 MOST Cooperation

 Page 115

MOST®
Specification

MOST Specification 05/2005

3.1.4.3.5 Synchronous Area

The synchronous channel time slots are available for real-time data such as audio/video or sensors
and eliminate the need for additional buffering in analog-to-digital converters (and digital-to-analog
converters) or in single speed CD devices for audio and video.

Accessing this data is provided by time division multiplexing (TDM) and allocation of quasi-static
physical channels for a certain period of time (e.g., while playing an audio source). The bandwidth for
such a channel can be adjusted by allocating any number of Bytes to one logical channel. The
maximum number of Bytes available in a synchronous channel is 60 Bytes/frame, which is
corresponding to 60 x 8 bits or 15 stereo channels of CD-quality audio. The typical frame rate is
44,100 frames/second.

The routing engine (RE) is used to route data to and from the appropriate sources or sinks within a
node. Internal synchronization is provided so input data does not need to be phase-aligned to the
MOST Network Interface Controller. The RE provides full flexibility in directing data from any source
to any sink just by setting the appropriate value in the corresponding registers.

3.1.4.3.6 Asynchronous (Packet Data) Area

Another time slot is available for asynchronous data transport as required for more packet-oriented,
burst-like data. In contrast to the control data channel, the asynchronous data channel provides
transmission of longer data packets.

Access to this type of data is provided in a token ring manner. Each node has fair access to this
channel and its bandwidth can be controlled using the boundary descriptor in a step of four Bytes
(quadlets). The maximum packet length on an asynchronous channel when using the 48 Bytes data
link layer, is 48 Bytes. In case of using an alternative data link layer, the maximum packet length is
1014. The data on this channel is CRC protected. The asynchronous message is defined as follows:

Byte Task
0 Arbitration

1-2 Target address
3 Length (in Quadlets = 4 Bytes)

4-5 Own address (Source address)
6-53 Data area

54-57 CRC

Table 3-2: Structure of a frame in the asynchronous area (48 Bytes data link layer)

Specification Document  Copyright 1999 - 2005 MOST Cooperation
Page 116

MOST®
Specification

MOST Specification 05/2005

Byte Task

0 Arbitration
1-2 Target address
3 Length (in Quadlets = 4 Bytes)

4-5 Own address (Source address)
6-1019 Data area

1020-1023 CRC

Table 3-3: Structure of a frame in the asynchronous area (alternative data link layer)

Since the asynchronous data area is variable, it can take several frames to complete a message. The
corresponding management such as arbitration and channel allocation is provided by the MOST
Network Interface Controller. A hardware CRC is provided. The CRC is calculated in the background
and can be indicated in a register at the end of each asynchronous message. A low-level retry
mechanism is not implemented.

Specification Document  Copyright 1999 - 2005 MOST Cooperation

 Page 117

MOST®
Specification

MOST Specification 05/2005

3.1.4.4 Control Data

3.1.4.4.1 Control Data Interface

The transmission of control data to and from the MOST Network Interface Controller is done via the
control bus.

3.1.4.4.2 Description

The control data is used mainly for communication between the single nodes of the bus. This is where
commands, status and diagnosis messages, as well as gateway messages are handled. The protocol
on this channel runs in a carrier sense multiple access (CSMA) manner offering predictable response
times, which are considered essential in an audio/video control network. At a system sample
frequency of 44.1 kHz, 2756 messages per second are transmitted, which corresponds to a gross data
rate of 705.6 kBit/s.

Since 2 out of 64 messages are used for a system wide distributing of the allocation information by the
network, the number of messages per second available for control messaging is 2670. When
subtracting the data used for control and data securing, the net data rate (user data plus addressing)
is 405.84 kBit/s, which corresponds to 19 Bytes per message that can be read from the MOST
Network Interface Controller.

A MOST device can access every third message propagated through the network. So a single device
has a maximum message rate of 890 per second, or a net data rate of 135.28kBit/s

There are two kinds of control messages. Normal messages provide control of applications, while
system messages handle system-related operations such as resource handling. A control data
message is 32 Bytes long and has the following structure:

Byte Task
 0-3 Arbitration
4-5 Target address
6-7 Own address (Source address)
8 Message type

9-25 Data area
26-27 CRC
28-29 Transmission status
30-31 Reserved

Table 3-4: Structure of a control data frame

Please note:
The delay time between two messages in case of low level retries – must be identical in all
nodes of a MOST Network.

Message type:
Normal messages:
 Single cast (logical or physical addressing)
 Groupcast
 Broadcast
System messages:
 Resource Allocate
 Resource De-Allocate
 Remote GetSource

Specification Document  Copyright 1999 - 2005 MOST Cooperation
Page 118

MOST®
Specification

MOST Specification 05/2005

Arbitration is provided automatically by the MOST Network Interface Controller in case a node wants
to send a message. In order to provide fair arbitration even at high bus loads, a double arbitration
mechanism is used. This ensures that an access is not depending on the communication load of
upstream devices and the priority is not depending on the network position. Rejection of messages is
flagged and automatic retransmission is performed. The number of retries can be defined by the
application software. If the maximum of retries is reached without success, a transmission error is
indicated to the controlling device (e.g., external micro controller).

Specification Document  Copyright 1999 - 2005 MOST Cooperation

 Page 119

MOST®
Specification

MOST Specification 05/2005

3.1.5 Internal Services

3.1.5.1 Addressing

The MOST Network Interface Controller supports four different ways of addressing:

• Node position in the ring.
The node position is generated automatically in each node during the locking procedure of the
MOST Network.

• Unique node address (2 Bytes).
This address can be set by the application.

• Group address (1 Byte).
Group address can be set by the application. A group is made up of devices that have the
same number in the group address register.

• Broadcast
The broadcast address is a special group address. When used, the message is received by
all nodes in the ring. Until the last node in the ring has acknowledged a broadcast message,
communication via the control channel is suppressed for other messages.

The different ways of addressing are mapped into the address area of a MOST Network Interface
Controller:

Address range Mode
0x0000…0x000F Internal Communication
0x0010…0x00FF Static address range
0x0100…0x013F Dynamic calculated (0x0100+POS) address range
0x0140…0x02FF Static address range
0x0300…0x03FF Reserved for group/ broadcast
0x0400…0x04FF Node position (0x0400 + POS) address range.
0x0500…0x0FEF Static address range

0x0FF0 Optional debug address
0x0FF1…0x0FFD Reserved

0x0FFE Init address of Network Service
0x0FFF Init address of Network Interface Controller
0xFFFF Uninitialized logical node address

 Note: the highest nibble is reserved for future use

Table 3-5: Addressing modes vs. address range

Group addressing is typically used for controlling several devices of the same type (e.g., active
speakers). The grouping of devices must be established during definition of the system.

Specification Document  Copyright 1999 - 2005 MOST Cooperation
Page 120

MOST®
Specification

MOST Specification 05/2005

3.1.5.2 Support at System Startup

The MOST Network Interface Controller meets all requirements of a low level startup. Several
supporting mechanisms are provided. All components of the system get a unique number, with
numbering starting at the Timing Master at 0x00, and then incremented by one. These numbers can
be used for node position addressing. Furthermore, every device receives the information about the
total number of devices in the ring. The MOST Network Interface Controller also provides a wakeup
mechanism.

3.1.5.3 Delay Recognition

Based on the fact that every node may be active or passive with respect to source data handling
(source data bypass open or closed), and that every active node generates two samples of delay, it is
useful to have information about source data delay, for example, for noise compensation applications,
or in high-end audio applications.

Therefore a mechanism is implemented in each MOST Network Interface Controller, giving access to
information about the total delay of the system, and to the delay up to the local node with respect to
the Timing Master.

3.1.5.4 Automatic Channel Allocation

Since administration of up to 30 audio channels would need many resources on an application’s side,
the MOST system supports resource administration on the MOST Network Interface Controller level.

Allocating one or more audio channels (up to 64 bits per allocation procedure) is done via a request
from an application to the Timing Master of the network. If there are enough channels, the application
will get a handle, by which source data can be routed onto the network. The handle can also be used
for de-allocating. A channel resource allocation table, distributed automatically in the ring (on the
MOST Network Interface Controller level), gives access to the current allocation status of the channels
in each node.

The channel map that belongs to the handle can be retrieved from the MOST Network Interface
Controller, or it can be delivered during connection management via control messages. It is possible to
change allocation during runtime.

3.1.5.5 Detection of Unused Channels

Detection of unused channels, i.e., channels, that are allocated by a device, but which are no longer
used, is done with the help of the channel resource allocation table. Only the timing master can
determine from its channel resource allocation table if there are unused channels. If there are unused
but allocated channels, they should be de-allocated with respect to the network resources.

Specification Document  Copyright 1999 - 2005 MOST Cooperation

 Page 121

MOST®
Specification

MOST Specification 05/2005

3.2 Dynamic Behavior of a Device

3.2.1 Overview

This section describes the dynamic behavior of the system — the states and state transitions of the
system, with a special focus on network dynamics (or the dynamic of the network interface of a
device). The expression NetInterface stands for the entire communication section of a device, that is,
the optical interface, the MOST Network Interface Controller, and the Network Service.

The figure below shows a layer model of a device. The lowest layer is the power supply. On this
layer, every hardware function is built, that is, the hardware of the NetInterface, which is made up of
the MOST Network Interface Controller, the optical interface, and the controller on which the Network
Service are running. The Network Service make up the next layer, on which the higher services of
address management, power management and network error management are based. At the top
layer there is the application itself.

Application

Network Service

MOST Network Interface Controller

 Optical Interface

Power Supply

Figure 3-2: Layer model of a device

Specification Document  Copyright 1999 - 2005 MOST Cooperation
Page 122

MOST®
Specification

MOST Specification 05/2005

Generally, for each device, the device specification must define all the possible combinations of the
states of the application section and the communication section. Especially from the view of the
network, there are three states that are mandatory for each device:

1. DevicePowerOff: Communication section is in state NetInterfacePowerOff. The application
section in a non-waking device is in state ApplicationPowerOff, or in a waking device in state
ApplicationSleep.

2. DeviceStandBy: This state is mainly influenced by state ApplicationLogicOnly. The logical
function of the application is running, while peripherals with high power consumption such as
drives are switched off. This state is reached after state DevicePowerOff. The communication
section is in state NetInterfaceNormalOperation.

3. DeviceNormalOperation: The communication section as well as the application section are in
state NormalOperation.

Since these main states are only a few of all possible device states, it is not useful to use a diagram.
The following description gives an impression of what may happen in the single states with respect to
the communication and application sections.

DevicePowerOff:

• The application may be awakened, e.g., by a timer, can check an external signal, and return to
state ApplicationSleep without waking up the NetInterface. The device does not leave the
mode.

• The application may be awakened, e.g., by a timer, and can then wake up the NetInterface,
and by that the entire network. The device changes to state DeviceStandBy, or state
DeviceNormalOperation

• The application may be awakened by light on the bus and then wakes the application during
initialization phase. The device changes to state DeviceStandBy.

DeviceStandBy:

• If the application is used, or its peripherals are in use, the device changes to state
DeviceNormalOperation.

• If light on the bus is switched off, the device changes to state DevicePowerOff.

DeviceNormalOperation:

• If light on the bus is switched off, the device changes to state DevicePowerOff.

The following description of the dynamic behavior is done from the bottom up. The most significant
subjects regarding power supply are described in section 4.1 on page 203. The following section
focuses on the dynamic behavior of the NetInterface.

Specification Document  Copyright 1999 - 2005 MOST Cooperation

 Page 123

MOST®
Specification

MOST Specification 05/2005

3.2.2 NetInterface

Here, the states of a device are seen from the view of the NetInterface. Operations within the
application of a device are not considered. Only the interfaces to the application are shown. The
following figure shows the states of the NetInterface and the events that lead to state transitions. The
following sections explain the individual states.

NetInterface
PowerOff

NetInterface
Init

NetInterface
Normal

Operation

NetInterface
Ring break
diagnosis

Diagnosis
Error

Shut Down

Start Up

Init Error
Shut Down

Normal
Shut Down

Error
Shut Down

Init Ready

Application
Init

Net On

Diagnosis
Start Diagnosis

Ready

Figure 3-3: Flow chart “Overview of the states in NetInterface”

Specification Document  Copyright 1999 - 2005 MOST Cooperation
Page 124

MOST®
Specification

MOST Specification 05/2005

3.2.2.1 NetInterfacePowerOff

In state NetInterfacePowerOff, the NetInterface is switched off from the view of the network. The FOT
does not emit light. The MOST Network Interface Controller does not necessarily need to be switched
off, since the application may still use function groups of it (e.g., RMCK generation).

State NetInterfacePowerOff is left when one of the following events occurs:

Event Transition to Cause
Start Up NetInterfaceInit A NetInterface is activated either by light at the

receiving FOT, by the application (Hypothetical
example: phone receives a call),
or by a switch at the device.

Diagnosis Start NetInterfaceRingBreakDiagnosis A NetInterface is activated by connecting to power
(for information about signal SwitchToPower please
refer to section 4.1 on page 203)

Table 3-6: Events in state NetInterfacePowerOff

3.2.2.2 NetInterfaceInit

In this state, NetInterface is initialized to the point where the MOST Network Interface Controller is
able to communicate with other nodes.

This state is left when one of the following events occurs:

Event Transition to Cause
Init Ready NetInterfaceNormalOperation NetInterface is ready for communication (see below).
Init Error Shut Down NetInterfacePowerOff Error occurred during initialization (see below).

Table 3-7: Events in state NetInterfaceInit

Causes for event Init Ready:

• In the Master device:
Net Activity and stable lock (at minimum for time tLock) were recognized. Lock is called stable
if for a period of time tLock no unlock events occurred.

• In a Slave device:
Stable lock (at minimum for time tLock) was recognized and the Boundary Descriptor value has
a valid value (>5). This fact is the basis for the statement that the Timing Master of the
system has also recognized stable lock, and the ring is closed.

Causes for event Init Error Shut Down:

• In the Master device:
Timeout tConfig, occurs before a stable lock can be recognized.

• In a waking Slave device:
Timeout tConfig, occurs before a closed ring can be recognized. Error Error_NSInit_Timeout is
stored by the application.

• In a non-waking Slave device:
Timeout tConfig, expires before light was recognized, or a closed ring was recognized; or the
light was switched off again.

Specification Document  Copyright 1999 - 2005 MOST Cooperation

 Page 125

MOST®
Specification

MOST Specification 05/2005

In a Slave device (non-waking) the all-bypass of the MOST Network Interface Controller is deactivated
(opened) as soon as a short lock is recognized (i.e., the lock does not need to be stable for tLock). In
case of a waking Slave device and the Master device, the all-bypass is deactivated immediately after
having entered this state (light at the output).

As soon as the initialization of the MOST Network Interface Controller starts, the logical node address
has to be set to 0x0FFE.

The flow chart below shows the behavior in state NetInterfaceInit. A differentiation is made between
Master and Slave. On this level, Master means Timing Master and Slave means Timing Slave.

MOST Network
Interface Controller
will be configured as

Master
(Light at output)

Start Up

Set NodeAddress in
MOST Network

Interface Controller
to 0x0FFE

Set the Boundary
Descriptor = 0x04

Start timer
tConfig

Light at input?

Timeout?

Set the Boundary
Descriptor = valid

value (>0x05)

Init Error
Shutdown Init Ready

yes

no yes

no

yes

no

The Start Up Event will be
activated either by a switch at
the device, by light at the input of
the FOT, or by the application.

Device with the Timing Master

Lock stable?

Figure 3-4: Behavior of a Master device in state NetInterfaceInit

Specification Document  Copyright 1999 - 2005 MOST Cooperation
Page 126

MOST®
Specification

MOST Specification 05/2005

When entering state NetInterfaceInit, the Timing Master loads the Boundary Descriptor with the
“invalid” value 0x04. This value is transferred to all MOST Network Interface Controllers via the frame.
As soon as the Timing Master recognizes a stable lock, it sets the Boundary Descriptor to a valid value
(>0x05). By doing this, every Slave in the ring can recognize when the Timing Master has reached
stable lock.

Start Up

MOST Network
Interface Controller
will be configured

as Slave
(Bypass disabled,

light at output)

Set NodeAddress in
MOST Network

Interface Controller
to 0x0FFE

Start timer
tConfig

Timeout?

Light at input?

Init Error
Shutdown Shutdown

yes

no

yes no

The Start Up event will be
generated by the application

(e.g. telephone receives a call),
or by a switch at the device.

Waking Slave Device

Figure 3-5: Behavior of a waking Slave device in state NetInterfaceInit

After having woken the ring (the light returned from Timing Master), the Slave Device goes to
Shutdown. From there it starts up as a standard Slave Device, woken by the Timing Master.

Specification Document  Copyright 1999 - 2005 MOST Cooperation

 Page 127

MOST®
Specification

MOST Specification 05/2005

Init Ready
Init Error

Shutdown

Light at input?

Deactivate Bypass at
recognized Lock

Lock stable
and ring closed?

Start Up

MOST Network
Interface Controller
will be configured

as Slave
(All Bypass enabled)

Set NodeAddress in
MOST Network

Interface Controller
to 0x0FFE

Start timer
tConfig

Timeout?

Light at input?

The ring is closed as soon as
the Boundary Descriptor in the
Slave Device has a valid value.

yes

no

yes

no

yes

no

yes

no

Woken Slave Device

The Start Up Event
will be generated at
the input of the FOT.

Figure 3-6: Behavior of a woken Slave device in state NetInterfaceInit

Specification Document  Copyright 1999 - 2005 MOST Cooperation
Page 128

MOST®
Specification

MOST Specification 05/2005

3.2.2.3 NetInterfaceNormalOperation

This state is reached as soon as the initialization has reached a level where the MOST Network
Interface Controller can start to communicate with other nodes in the network. When entering this
state, the part of the application that is connected to the communication section is initialized.

Examples for initializing a higher layer due to NetOn Event:

• Check of system configuration and building of the Central Registry (refer to section 3.3.3).

• Setting of the logical node address and group address (refer to section 3.3).

• Initialization of the sending and receiving parts of the Network Service.

In certain circumstances, other application units are initialized earlier, independently from the state of
the NetInterface.

Event Transition to Cause
Normal Shut Down NetInterfacePowerOff NetInterface will be deactivated by switching off light.
Error Shut Down NetInterfacePowerOff NetInterface will be deactivated due to a critical

unlock.
Net On Report to an application Entering state NetInterface Normal Operation

Table 3-8: Events in state NetInterfaceNormalOperation

The Normal Shut Down event is generated as soon as no light is recognized at the input.

In state NetInterfaceNormalOperation, the Network Service checks the lock state of the PLL of the
MOST Network Interface Controller. On an unlock, the application is informed as soon as possible by
an unlock event. Every application then has to save its output signals (e.g., amplifier mutes its
outputs).

In addition to that, the Network Service checks the length of an unlock, or the occurrence of a series of
unlocks. If the length of a single unlock exceeds the time tUnlock, an Error Shut Down event (critical
unlock) is generated.

In case of a series of unlocks the time of the different unlocks are accumulated. If this accumulated
time is greater than tUnlock (a single unlock which cause a critical unlock) an Error Shut down event is
generated. The accumulated time is reset whenever a stable lock is reached, that is if there is a lock
that lasts at least tLock.

The following example will clarify the meaning. (The timer values used can be found in section 3.9 on
page 196).

Specification Document  Copyright 1999 - 2005 MOST Cooperation

 Page 129

MOST®
Specification

MOST Specification 05/2005

Stable Lock1

Stable Lock

Stable Lock

Stable Lock

Lock Lock Stable Lock2

3

4

Lock

Lock

Lock Stable Lock Lock Stable Lock

Critical Unlock

Critical Unlock

Unlock Lock Stable LockCritical Unlock

Figure 3-7: Examples of the behavior when unlocks occur.

1. The first example shows an unlock that persists longer than tUnlock. This results in a critical

unlock (Error Shutdown event).

2. The second example shows a series of short unlocks with an accumulated total that is less
than tUnlock. In this case no critical unlock will occur.

3. The third example shows when two unlocks with an accumulated total that exceeds tUnlock.

This leads to a critical unlock.

4. The unlocks in the last example are almost as long as tUnlock. The example shows that the
system can withstand a series of long unlocks provided that a lock time of at least tLock is
interspersed between them.

In addition to that, the change in number of MOST devices is checked. If this number indicates a
Network Change Event, the application will get informed about that.

The flow chart below shows the behavior in state NetInterfaceNormalOperation:

Specification Document  Copyright 1999 - 2005 MOST Cooperation
Page 130

MOST®
Specification

MOST Specification 05/2005

Every device

Init Ready

Off Request?

Light at input?

Change in
number of MOST

Devices?

Unlock?

Report to application:
Net Off Event

Report to application:
NetworkChangeEvent

Report to application:
Lock Event Critical unlock?

Report to application:
Unlock Event

Report to application:
Net Off Event

Error Shut
Down

Normal Shut
Down

Report to application:
Net On Event

An unexpected Net Off Event, i.e.
without having started method
ShutDown in NetBlock before,
will be interpreted as Error Shut

Down in the higher layer

Off Request is the request (by a
higher layer) to switch off light

Initialization of the next upper
layer e.g. setting address,

verifying system configuration,
etc.

yes

no

no

yes

yes

no

yes

no

no

yes

Figure 3-8: Behavior in state NetInterfaceNormalOperation

Specification Document  Copyright 1999 - 2005 MOST Cooperation

 Page 131

MOST®
Specification

MOST Specification 05/2005

3.2.2.4 NetInterface Ring Break Diagnosis

A simple recognition of a fatal error is possible in any state. Ring break diagnosis serves the purpose
of localizing a fatal error in the network. It is run not during normal operation, but in the car repair, or
at the assembly line.

The RingBreakDiagnosis process can be started by various triggers, which must be chosen and
implemented by the System Integrator. One possible way is, to start the RingBreakDiagnosis by
disconnecting the System from the power source for a short time. In this case, RingBreakDiagnosis is
entered, when signal SwitchToPower of the SwitchToPowerDetector indicates, that the device was
connected to power first time (e.g., after reconnection of the car’s battery). This signal is not
evaluated during NetOn. If SwitchToPower is used to trigger RingBreakDiagnosis, all devices must
start the diagnosis within tDiag_Start_.

In state NetInterfaceRingBreakDiagnosis the network cannot reach normal operation. In this state, a
relative node position is determined in every device. This information can be used in case of a fatal
error (ring break or defective device) to localize the error.

If there is no fatal error, the NetInterface immediately changes to state NetInterfaceNormalOperation.

In case of a Diagnosis Error Shut Down event, the position determined in each device describes the
position relative to the device that was configured as Timing Master at the end of RingBreakDiagnosis
(since there was no light at its input).

M

S S

S

rel. Pos.: 1
rel. Pos.: 2

rel. Pos.: 3rel. Pos.: 0

Tx
Rx

Figure 3-9: Localizing a fatal error with the help of ring break diagnosis.

Event Transition to Cause
Diagnosis Ready NetInterfaceNormalOperation No fatal error.
Diagnosis Error Shut Down NetInterfacePowerOff Fatal error (Ring break or defective device)

Table 3-9: Events in state NetInterfaceRingBreakDiagnosis

Specification Document  Copyright 1999 - 2005 MOST Cooperation
Page 132

MOST®
Specification

MOST Specification 05/2005

During RingBreakDiagnosis a device stays configured as Timing Master, until it recognizes light at its
input, or until the Diagnosis Error Shut Down event is generated by occurrence of the timeout
(tDiag_Master or tDiag_Slave respectively). On a fatal error, the application stores the error
Error_Ring_Diagnosis with the relative ring position.

After recognition of a stable lock, a Timing Master device generates a Diagnosis Ready event and
changes immediately to state NetInterfaceNormalOperation.

The timeout values (tDiag_Master or tDiag_Slave) can be changed through the system integrator, if alternative
approaches for ring break diagnosis are used. In this case, the system integrator must make sure that
all devices in the network are able to start the diagnosis process within the specified timeouts.

As soon as a device, which does not contain the Timing Master under normal operation conditions,
recognizes light at its input, it is configured as Slave (all-bypass enabled). The all-bypass is
deactivated after a recognized lock. If no lock errors occur for a time tDiag_Lock (stable lock), the relative
ring position is determined.

If, on stable lock, the Boundary Descriptor value is greater than 5, the ring is closed. There is no
defect and the NetInterface changes to state NetInterfaceNormalOperation.

If the ring could be closed, every NetInterface switches to state NetInterfaceNormalOperation. The
application will get notified about that by the NetOnEvent. After that, all high level initializations must
be performed (Building of the Central Registry, address initialization, notification...).

If the ring could not be closed since a ring break exists, devices should not be restarted by incoming
light until tDiag_Restart has passed.

The following flow charts show the behavior in the state NetInterfaceRingBreakDiagnosis:

Specification Document  Copyright 1999 - 2005 MOST Cooperation

 Page 133

MOST®
Specification

MOST Specification 05/2005

Diagnosis
Start

Light at
input ?

yes

no

Timeout
(t_Diag_Master)

no

yes

Start Timer
(t_Diag_Master)

The Diagnosis Start Event will be
generated by connecting to

power

MOST Network
Interface Controller

configured as
Master (Light at

output)

Set the Boundary
Descriptor = 0x04

Light at
input ?

MOST Network
Interface Controller

will be configured as
Slave with All
Bypass active

Start Timer
(t_Difference)

Lock stable?
no

no

yes

Diag_M2

Diag_M1

Set the Boundary
Descriptor = valid

value (>0x05)

Diagnosis Ready

yes

Time t_Diag_Master is
already expired

-> t_Difference =
t_Diag_Slave -
t_Diag_Master

Device with Timing Master

Figure 3-10: Behavior during ring break diagnosis in a Timing Master (part 1)

Specification Document  Copyright 1999 - 2005 MOST Cooperation
Page 134

MOST®
Specification

MOST Specification 05/2005

Diagnosis Start

Light at input ?

MOST Network
Interface

Controller will be
configured as
Slave with All
Bypass active

Start Timer
(tDiag_Slave)

Diag_M1

The Diagnosis Start Event will be
generated by connecting to power

MOST Network
Interface

Controller will be
configured as

Master
(Light at output)

Start Timer
(tDiag_Slave)

Set the Boundary
Descriptor = 0x04

Light at input ?

Timeout ?
(tDiag_Slave)

Diag_M2

Diag_M2

Yes

Yes

Yes

No

No

No

Figure 3-11: Behavior during ring break diagnosis in a Slave (part 1)

Specification Document  Copyright 1999 - 2005 MOST Cooperation

 Page 135

MOST®
Specification

MOST Specification 05/2005

Timeout
 (t_Diag_Slave) Diag_M2

yes

Light at
input ?

no

no

Bypass will be
deactivated directly

after recognizing lock

Lock stable
and ring closed?

yes

yes

no

Diag_M1

Diag_M2

Every Device

Diagnosis Ready

The ring is closed, as soon
as the Boundary Descriptor
value in the Slave Device is

valid (> 0x05)

Figure 3-12: Behavior during ring break diagnosis in a Timing Master and Slave (part 2)

Specification Document  Copyright 1999 - 2005 MOST Cooperation
Page 136

MOST®
Specification

MOST Specification 05/2005

MOST Network
Interface Controller
will be configured as

Slave with All
Bypass active

Start Timer
(t_restart)

Switch off light at
output

Timeout
(t_restart)

no

Timeout
(t_Diag_Slave) or
(t_Diag_Master)

respectively

yes

Light at
input ?

no

no

yes

Diag_M2

Diag_M1
Diagnosis Error Shut

Down

yes

Every Device

Figure 3-13: Behavior during ring break diagnosis in a Timing Master and Slave (part 3)

Specification Document  Copyright 1999 - 2005 MOST Cooperation

 Page 137

MOST®
Specification

MOST Specification 05/2005

3.2.3 Secondary Nodes

For some applications it can be useful to integrate two MOST Network Interface Controllers into one
device. The two nodes are called "Primary" and "Secondary" node. A detailed definition of these
names and a description of the possible structures are available in section 3.10 on page 200. A
Secondary Node does not contain any function blocks. In case of receiving any request, it returns an
error (Error Secondary Node. Please refer to section 2.3.2.5.1 on page 45). This error has the
meaning of "I am a Secondary Node only. The node responsible for me has DeviceID 0xnnnn". The
example below shows this mechanism by means of the request of System Configuration
(NetworkMaster). During Network Configuration request, the NetworkMaster asks all nodes for the
function blocks they contain. The secondary node therefore replies:

SN -> NM: NetBlock.Pos.FBlockIDs.Error (ErrorCode = 0x0A = Secondary Node,
 ErrorInfo = DeviceID of Primary Node)

In the Central Registry it must be marked, which node is the Primary Node to a certain Secondary
Node. Therefore, the Central Registry must be sorted in a way, that the Secondary Node's entry
directly succeeds the entry of the Primary Node in case of a request. This does explicitly not refer to
the hardware configuration in the respective device. In a MOST device, the Primary Node can be
arranged behind the Secondary Node as well.

For completing the entries of Secondary Nodes in the Central Registry, each Secondary Node is
registered with a single Function Block (FBlock) having FBlockID.InstID = 0xFC.0.

Specification Document  Copyright 1999 - 2005 MOST Cooperation
Page 138

MOST®
Specification

MOST Specification 05/2005

3.2.4 Power Management
Power management means that the administrative function, which is above the Network Service,
wakes and shuts down the MOST network or specific devices. The power management is handled
mainly by the PowerMaster, which uses NetBlock functions for this purpose.

3.2.4.1 Waking of the Network

Waking the network is done by emitting modulated light (light on). In principle the network can be
awakened by any node. The ability of a node to wake up the network can be activated or deactivated
by the PowerMaster (e.g., in case of a critical charge status of the accumulator) in the property
AbilityToWake, which is mandatory for every NetBlock. The PowerMaster itself will usually wake the
network, for example, when there is communication on the car’s bus, or based on the status of the
vehicle (Clamp status).

Please note:
A device must only wake the network when this is initiated by the application. Failure (e.g.,
supply voltage too low, or too high) must not initiate waking of the network.
Other solutions for waking up the network have been implemented as well, such as using an
electrical wakeup line. It is up to the system integrator to choose the preferred wakeup
method. The process described here, is independent of the wakeup method.

When an application wakes the network, it calls the respective routine in the Network Service, which
switches on light at the output of the device. Every node that recognizes light at its input switches on
light at its output and initializes. In this way the light travels from node to node until the entire network
is awake.

DeviceDevice

Net
Interface

Applic.

StartUp

Light on

Net
Interface

Applic.

NetOn

Figure 3-14: Example (2 devices) for waking of the MOST network via light on the network

Specification Document  Copyright 1999 - 2005 MOST Cooperation

 Page 139

MOST®
Specification

MOST Specification 05/2005

3.2.4.2 Network Shutdown

Switching off the network is done on lowest level by switching off light. A device, which has switched
off light, must not switch it on again before tRestart occurred. This applies even if it recognizes light at its
input (optical wakeup). Electrical wakeups may be latched to perform a wakeup after tRestart.

All devices, except the one containing the PowerMaster, switch off light when certain errors occur
(unlock, low voltage with reset). This is done without warning the other devices by sending a
telegram.

In all other cases, only the PowerMaster switches off the network. For avoiding that devices have to
save their status to persistent memory very often, the PowerMaster implements a shutdown procedure
that has two stages. This procedure contains request and execution. For requesting, it starts method
ShutDown with parameter Query in all NetBlocks of the system. This is one of the rare cases where
a telegram is broadcasted. After that, the PowerMaster waits for tSuspend before it actually shuts down
the system. A device without any further need for communication does not respond on
ShutDown.Start(Query).

The execution is announced by the PowerMaster by starting ShutDown.Start(Execute). By this
function call, the shutdown process is started irrevocably. The devices do not reply to this call. They
prepare for shutting down (saving status) and then wait for the light to be switched off.

The PowerMaster switches off light tShutDownWait after ShutDown.Start(Execute). This time allows to
shutdown audio output without audible side effects. If the light was not switched off within tSlaveShutdown a
slave device may switch off the light.

If a function block desires to communicate, it must notify the PowerMaster after
ShutDown.Start(Query) with ShutDown.Result (Suspend) within time tSuspend. The PowerMaster then
postpones its attempt to switch off for time tRetryShutDown, before retrying to shut down. This procedure
guarantees that a device, which woke the bus in the parked vehicle, does not need to prevent the
PowerMaster from switching off the network actively (according to the current status of the vehicle).
For switching off, the PowerMaster calls the respective routine in the Network Service. The status
“light off” travels around the ring in the same way as “light on” when waking the network. After a
certain delay time tPwrSwitchOffDelay the nodes change to sleep mode.

Specification Document  Copyright 1999 - 2005 MOST Cooperation
Page 140

MOST®
Specification

MOST Specification 05/2005

Device
Device

Net
Interface

NetBlock

4) Off Request

5) Light off

Power
Master

Net
Interface

NetBlock

6) Net Off Event

Applic.2) Net Off ?

1) ShutDown.Start (Query)
3) ShutDown.Start (Execute)

Figure 3-15: Switching off MOST Network via starting method ShutDown in every NetBlock, and
signaling to every application, and switching off light

If a device desires to wake the network directly after a shutdown, it has to wait at minimum for tRestart
(running from Light Off), before it switches on light again.

DeviceDevice

Net
Interface

NetBlock Power
Master

Net
Interface

NetBlock Applic.

1) ShutDown.Start

4) ShutDown.Result
(Suspend)

2) Net Off ?

3) No !

Figure 3-16: Prevention of switching off MOST Network via ShutDown.Result (Suspend)

Please note:
If the light is switched off during shutdown, e.g., by low voltage, long unlock or fatal error, the
PowerMaster must not wake the network for being able to finish its shutdown procedure. The
PowerMaster must regard the shutdown procedure as complete.

Specification Document  Copyright 1999 - 2005 MOST Cooperation

 Page 141

MOST®
Specification

MOST Specification 05/2005

3.2.4.3 Device Shutdown
In order to minimize power consumption on system and device level it is possible to shut down specific
MOST devices, this process is called Device Shutdown. Shutting down a device may affect the
application on a system level, avoiding such affects is handled by other mechanisms. It is optional to
support Device Shutdown.

When a device is shut down, all applications in the device may be shut down with the exception of
NetBlock, which is still active with full functionality. Also, the Device has to know the current System
State when it wakes from Device Shutdown; therefore the Network Master Shadow has to keep track
of the current System State even while the device is in Device Shutdown state.

The NetBlock.Shutdown.Start message is used to bring a device into or out of Device Shutdown.
When managing Device Shutdown, this message may be sent to one device or a group of devices, as
opposed to Network Shutdown where this message has to be broadcast. The behavior of a device
during Network Shutdown is not affected by whether the device is in Device Shutdown or not. Refer to
section 3.2.4.2 for information about Network Shutdown.

3.2.4.3.1 Performing Device Shutdown

The process of shutting down a device or a group of devices can be divided into two stages, a request
stage and an execution stage. The request stage is optional.

Request Stage (Optional)

This stage guarantees that a device is not shut down while its function blocks are communicating with
function blocks on other devices. It is also useful if the PowerMaster wants to shut down a group of
devices but only if the whole group is ready.

1. The PowerMaster sends Shutdown.Start(Query) to a single device or a group of devices.

2. The PowerMaster will wait for tSuspend to allow devices to suspend its own shut down.

3. A device that requires communication will respond with Shutdown.Result(Suspend).

4. If a device responds to the Query, the PowerMaster will wait for tRetryShutdown before trying
again.

5. Steps one through four may be repeated until tSuspend expires before receiving a request to
suspend the Device Shutdown process. Then the Execution stage is entered.

Execution Stage

To execute Device Shutdown, the PowerMaster starts method Shutdown with parameter
DeviceShutdown in a single device or in a group of devices.

1. The PowerMaster sends Shutdown.Start(DeviceShutdown).

2. The Device mutes any synchronous outputs.

3. The Device unregisters itself from notification matrices in other devices, if any.

4. The Device unregisters its function blocks by sending an FBlockIDs.Status() with an empty
FBlockIDList.

5. The NetworkMaster broadcasts the device’s invalid function blocks.

6. The device can shut down its application but the NetBlock has to stay active.

Specification Document  Copyright 1999 - 2005 MOST Cooperation
Page 142

MOST®
Specification

MOST Specification 05/2005

3.2.4.3.2 Waking from Device Shutdown

The device can be woken by the PowerMaster or by the device itself.

WakeUp by PowerMaster

1. The PowerMaster sends Shutdown.Start(WakeFromDeviceShutdown).

2. The Device wakes its application.

3. The Device registers its own function blocks using FBlockIDs.Status(FBlockIDList).

4. When Network Master reports the new function blocks they can be used.

Internal Wakeup

1. The Device wakes its application.

2. When the System State is OK or when explicitly asked by the NetworkMaster, the device
registers its own function blocks using FBlockIDs.Status(FBlockIDList).

3. When Network Master reports the new function blocks they can be used.

3.2.4.3.3 Persistence of Device Shutdown

The state of being in Device Shutdown is not memorized after a system restart.

3.2.4.3.4 Response when Device Shutdown is unsupported

Since Device Shutdown is optional, the NetBlock of a device that does not have support for Device
Shutdown responds to a request for Device Shutdown with ErrorCode 0x07 (parameter not available).

Specification Document  Copyright 1999 - 2005 MOST Cooperation

 Page 143

MOST®
Specification

MOST Specification 05/2005

3.2.5 Error Management

In the network the following errors may occur on the lowest level:

• Fatal Error: Error that leads to the interruption of the ring, to the breakdown of the network, or
that means the network cannot be initialized (Super- or sub-voltage, ring break, defect FOT
unit).

• Unlock: The PLL of the MOST Network Interface Controller is no longer locked. A ring break
is not necessarily the inevitable conclusion of this error.

• Network Change Event: One of the nodes in the network has activated or deactivated its all-
bypass, which means it “disappears” or “appears” as a new node.

• Voltage Low: The voltage of one or more devices is too low to maintain operation of the
NetInterface.

For the handling of these errors, there are the following general rules:

• No alert communication: For keeping error management simple, robust and not error-prone,
there is no communication in case of an error.

• Local Handling Of Errors: Every device is responsible to handle every recognized error
locally. Only the NetworkMaster handles errors for the entire network.

• Securing Synchronous Signals: In opposite to the packet data area and the control channel,
there is no data securing for the synchronous area. So data transported here, is sensitive for
disturbances in case of errors. A device that recognizes an error, should immediately secure
all output signals that depend on synchronous data transfer. This applies for instance to an
audio amplifier, which has to mute its analog output signal (the one connected to the
speakers). The synchronous connections on the Network are not removed, except in case of
a fatal error or a Network Change Event, which leads to the NetworkMaster sending out
Configuration.Status(NotOK).

3.2.5.1 Handling of Light Off

If a device recognizes at its input that light was switched off, it switches off its own output immediately.
In case there is the need to wake the network again, it has to wait for tRestart. If light was switched off
without a ShutDown.Start (Execute), there may be two causes:

• Fatal error (voltage low, ring break), which is described below

• A device runs error handling (e.g., long unlock). In such a case the PowerMaster switches on
light again, if the vehicle’s status requires it. So it wakes the network in the normal way. By
that a re-initialization is done.

If light was switched off, it may be the case that it is switched on again after a short time. If the
application would shut down immediately, some devices may need a long time to return to normal
operation. Therefore the application has to be prepared for Shutdown, but has to stay active for
tPwrSwitchOffDelay. If the light reappears within tPwrSwitchOffDelay, the system is re-initialized like when waking
up after sleep mode. The only difference is, that within the devices power supply, micro controller,
and operating system need not to be re-initialized.

Specification Document  Copyright 1999 - 2005 MOST Cooperation
Page 144

MOST®
Specification

MOST Specification 05/2005

3.2.5.2 Fatal Error

A “fatal error” is a kind of error that prevents the light from being handed on in the Ring. There are
four possible reasons:

• A device (especially optical transmitter, optical transceiver, or a MOST Network Interface
Controller) has no, or an insufficient distribution voltage.

• An optical receiver is defect.

• An optical transmitter is defect.

• The optical connection between transmitter and receiver is interrupted

3.2.5.2.1 Waking

If a fatal error occurs while an application tries to wake the network, “light on” does not propagate
through the entire ring, and the Network Service in every device change to state NetInterfaceOff after
tConfig. The waking application waits for tRestart and then tries again to wake the network. This will be
repeated up to three times and then it suspends the waking. Only the PowerMaster tries to start up
the network if required by the vehicle’s status.

3.2.5.2.2 Operation

If there is a fatal error during normal operation, “light off” propagates through the entire ring. This is
handled as described above. In case the power status of the vehicle requires it, the PowerMaster tries
to wake the network after tRestart. So the handling of a fatal error during waking needs to be performed
(see above).

Specification Document  Copyright 1999 - 2005 MOST Cooperation

 Page 145

MOST®
Specification

MOST Specification 05/2005

3.2.5.3 Unlock

An unlock occurs when a timing Slave cannot lock onto the input signal of the PLL of the MOST
Network Interface Controller, or if a Timing Master does not receive a comprehensible signal.

One cause for this may be that two Timing Masters in one ring work against each other. This case
can be recognized only in the Timing Masters themselves.

Another cause can be that the optical signal at a node’s input is too weak, or a node opens or closes
its all-bypass. Every node downstream from the location that caused the unlock, up to the Timing
Master, recognizes the unlock. The nodes downstream of the Timing Master up to the location that
caused the unlock do not recognize the unlock. On an unlock, data errors occur. Based on its
securing mechanism, the control channel is relatively insensitive to short unlocks.

Reaction of the Network Service:
The Network Service of every device report an unlock immediately to the application by an Unlock
event. In addition to that, the length of the unlock, and the occurrence of short unlocks is checked. If
the network seems to be unstable due to long or frequent unlocks, an ErrorShutDown is performed by
the Network Service. This is reported to the application with the help of a NetOff event. Following the
context of its standard tasks, the PowerMaster tries to wake the network again after that.

Reaction on application level:
The following applies to all sinks in the system.
The application secures the synchronous signals. For example, an audio amplifier must mute as fast
as possible (refer to section 3.8.1.4). After a lock is established again (recognized by the Network
Service), the application restores its synchronous signals as fast as possible (e.g., de-mute). This
must happen only if there is no Network Change Event, where a node has closed its all-bypass and
therefore has left the network.

Reaction on NetworkMaster:

The NetworkMaster does not react on an unlock in a specific way. Both errors are stored in the error
memory in the same way as in other devices.

Specification Document  Copyright 1999 - 2005 MOST Cooperation
Page 146

MOST®
Specification

MOST Specification 05/2005

3.2.5.4 Network Change Event

A Network Change Event (NCE) is defined as a detected change of the Maximum Position Information
transmitted cyclically on the Network.

If a device opens or closes its All Bypass, i.e. enters or leaves the Network, the Maximum Position
Information changes (except for the case when one device enters and another device leaves the
network in a very short time interval1).

Disturbance on the Maximum Position Information can occur, e.g., from an unlock.

A NCE is recognized by the Network Service in every device.

If an additional node joined the network, the new node must be integrated on system level. Therefore
SystemCommunicationInit must run (refer to chapter 3.3.1.1.2). In order to achieve that the
NetworkMaster checks configuration again and broadcasts Configuration.Status.

If a node has left the network, the output signals that depend on synchronous data transfer must be
secured immediately. Furthermore, every node must be able to handle the case where a
communication partner is missing, and must act accordingly in a safe way. The NetworkMaster checks
configuration again and broadcasts Configuration.Status.

1 Typically up to 24 ms

Specification Document  Copyright 1999 - 2005 MOST Cooperation

 Page 147

MOST®
Specification

MOST Specification 05/2005

3.2.5.5 Failure of a Function Block

It can be that single processes in a Device are hanging (but not the entire device), and that those
processes need to be restarted. In case this failure stops an entire, or even several Function Blocks
(FBlocks), the device has to un-register those function blocks in the Central Registry in the
NetworkMaster. This is done through a notification of the new status of FBlockIDs sent to the
NetworkMaster:

Device -> NM: NetBlock.RxTxLog.FBlockIDs.Status (FBlockIDList)

This tells, that only those function blocks contained in FBlockIDList are available. The NetworkMaster
updates the Central Registry and broadcasts immediately after the reception of such an
un-registration:

NM -> All: NetworkMaster.1.Configuration.Status (Control=Invalid,
 DeltaFBlockIDList)

Control uns. Byte 0: NotOK
 1: OK
 2: Invalid
 3: New

DeltaFBlockIDList List of FBlockID.InstID

A detailed description of the handling of "Control = Invalid" and "Control = New" is to be found in
sections 3.3.3.6 and 3.3.4.3.

DeltaFBlockIDList means the list of those function blocks that are invalid. Therefore, all applications
have the required information and can terminate functions depending on the invalid function blocks.

If the failed process is ready (after being killed and re-initialized), the depending function blocks are
registered again:

Device -> NM: NetBlock.RxTxLog.FBlockIDs.Status (FBlockIDList)

The NetworkMaster registers those function blocks in the Central Registry, and broadcasts
immediately after having received the registration:

NM -> All: NetworkMaster.1.Configuration.Status (Control=New,
DeltaFBlockIDList)

Here, DeltaFBlockIDList means the list of the new function blocks.

Please note:
In case a device, that starts up fast, has single function blocks starting up relatively slow, the
same mechanism of supplementary registration can be used. But the status message may not
be sent before the NetworkMaster has asked the device.

When the Network Master reports Central Registry updates, the DeltaFBlockList must contain a
maximum of five function blocks. This allows the message to be sent within a single telegram
(11 Bytes max.). This limitation refers to such nodes, which can handle single telegrams only.
In case more than five function blocks must be reported, several single telegrams are sent.
Refer to sections 3.3.3.6.1 and 3.3.3.6.2.

Specification Document  Copyright 1999 - 2005 MOST Cooperation
Page 148

MOST®
Specification

MOST Specification 05/2005

3.2.5.6 “Hanging” of an Application

By implementing a watchdog in each device, a long “hanging” of the application should be avoided.
This effect is reduced to a Network Change Event (Closing of all-bypass), and an eventual second
Network Change Event (Opening of all-bypass).

Every application must be able to handle the case where one of its communication partners does not
respond, and safely terminate the parts of the program that depend on this communication.

3.2.5.7 Failure of a Network Slave Device

If a device experiences an internal failure and recovers from that by restarting, all its function blocks
must be unregistered in the Central Registry. When the Network Master announces the loss of the
function blocks through a Configuration.Status message, the device must register its function blocks
again.
The device must always wait until it is asked by the NetworkMaster, then return the empty list. The
device must not communicate until it receives a Config.Status message. If the System State is OK
(section 3.3.4.3.8), then the device must register its FBlocks.

Specification Document  Copyright 1999 - 2005 MOST Cooperation

 Page 149

MOST®
Specification

MOST Specification 05/2005

3.2.5.8 Low Voltage

The definition of voltage levels and more information can be found in section 4.7 on page 213. A too-
low supply voltage does not inevitably occur in every device at the same time and in the same
intensity. As already described, there are two limits regarding the supply voltage of a device:

Critical voltage UCritical:
First, there is the limit at which the application will no longer work safely, but where communication is
still possible. Since the application does not work any longer, the output signals that depend on
synchronous data transfer must be secured. In case of a recovery, they can be restored immediately.

Low voltage ULow:
There is a second limit, where even the NetInterface no longer works reliable, so even communication
cannot be maintained.
If low voltage is reached the device is reset, then it switches off the light and switches to normal
DevicePowerOff Mode, as if it was switched off. The device stays in DevicePowerOff mode, even if
the supply voltage recovers. It is awakened either by “light on” at its input, or by the demand for
communication from its own application. It changes to mode DeviceNormalOperation via the standard
initialization process. The low voltage reset leads a device to normal behavior.

By opening all-bypass, the device indicates that it is joining the network. The other devices must then
integrate it into the system via SystemCommunicationInit. Further signaling is not required here as
well.

Device
NormalOperation

U>UCritical

Sync Signals Demute
NetInterface

NormalOperation

Device StandBy
Sync Signals Mute
NetInterface Normal

Operation

DevicePowerOff
(normal Sleep Mode)
NetInterface PowerOff

SystemCommunicationInit
(Notification...) deleted

U<ULow((Light On at receiver)
or (Application Request))
& (U > UCritical)
(no own initiative)

U<UCritical

U>UCritical

1
Figure 3-17: Behavior of a device depending on supply voltage

1 Note: It is up to the system integrator to decide whether an application is powered or not.

Specification Document  Copyright 1999 - 2005 MOST Cooperation
Page 150

MOST®
Specification

MOST Specification 05/2005

3.2.6 Over-Temperature Management

3.2.6.1 Introduction

Some components could experience malfunctions or permanent damage when exposed to
temperature conditions above their operating limits. Even though it should be the design goal of every
system that such condition is never reached during normal operation, it is still necessary to define the
system’s behavior for this worst case. This recommendation is applicable to every device, which can
monitor its own temperature and decide when to take appropriate action.
Different strategies are presented for the re-start of the system; they work independent from each
other and can even be mixed within one system, if desired.

3.2.6.2 Levels of Temperature Alert

Wake-Up
(2)Send Status &

App OFF

App. ON

(3)Send Status
for Shutdown Wake-Up

(4)
Shutdownϑ

Deadϑ

AppOffϑ

AppOffϑ
AppOnϑ

st coolt coolt st

NetOnϑ

AppOffϑ

Figure 3-18: Alert Levels

Figure 3-18 shows three of the four different temperature alert levels that can be identified. Starting
with the lowest one, they are:

1. Limited application functionality (not shown in the figure). Above a certain temperature, an
application may decide to limit its functionality in order to reduce power dissipation and hence
the warming up of the device. This could be done “silently” by the application or with an
appropriate notification of the application’s controller. An example is: Volume limitation in
order to reduce the power stage’s power dissipation.

Specification Document  Copyright 1999 - 2005 MOST Cooperation

 Page 151

MOST®
Specification

MOST Specification 05/2005

2. Shutdown of individual applications. If, for example, a telephone unit becomes warmer than

its maximum operating temperature (which is still below the maximum operating temperature
for the FOT unit or other components needed for MOST functionality), the device could decide
to shut down this specific application. The function block is then removed from the
CentralRegistry by sending an updated NetBlock.FBlockIDs.Status message to the
NetworkMaster.

3. If the temperature comes near the critical limit, the device should request a temperature
shutdown from the PowerMaster. This is done by broadcasting NetBlock.Shutdown.Result
with parameter 0x03 (Temperature Shutdown). The PowerMaster will then execute the
standard shutdown procedure, please refer to section 3.2.4.2. Before that, it will set the
AbilityToWake property of all devices except the one with the temperature problem to “Off”.

4. If the critical temperature is finally reached (e.g., if the normal shutdown procedure does not
finish due to a device constantly sending NetBlock.Shutdown.Result(Suspend)), an immediate
shutdown is initiated by the device, which is in critical condition by simply switching the light
off. Since the PowerMaster is aware of the over-temperature condition (because of having
received the device’s broadcast message before), it shall avoid an immediate restart of the
network. The PowerMaster is considered to be in “over-temperature-mode”, a state that is
maintained beyond the shutdown of the system.

From these alert levels, only the following subset is mandatory: Point 4 as described above, and the
broadcasting of the message NetBlock.Shutdown.Result(0x03) by the device as described under point
3. All other measures, including the standard shutdown procedure mentioned under point 3, are
optional and can be used independently from each other.

3.2.6.3 Re-Start Behavior

After the system has been shutdown (see points 3 and 4 above), it has to stay off long enough for the
device to cool down. The temperature should sink to a level that guarantees a reasonable amount of
operation time when the system is back up again, i.e. it is not very useful to have a system that re-
starts and remains in operational state for just a minute.
There are several ways to determine when and how the system shall be re-started. Like with the alert
levels, they can be combined in several ways.

a) If the device is able to supervise its own cooling phase, it may wake up the ring when it has
cooled down.

b) The PowerMaster may decide, after a while, to try a re-start. It simply wakes up the ring.

c) The PowerMaster could be triggered to re-start the ring upon user request.

Independent of those three re-start methods, the following is mandatory for the re-start procedure:

• If the device finds that it is still above the re-start temperature threshold, it broadcasts
NetBlock.Shutdown.Result(0x03) again immediately after the NetOn state is reached. The
PowerMaster shuts down the system again (without the standard procedure).

• If at re-start the NetworkMaster reaches the state “Configuration OK”, the over-temperature
condition of the system is over and the PowerMaster resets the AbilityToWake properties of all
devices to their original state.

Specification Document  Copyright 1999 - 2005 MOST Cooperation
Page 152

MOST®
Specification

MOST Specification 05/2005

• A minimum time between re-start attempts of the system shall be guaranteed so the device

has a chance to cool down. After all, a failing attempt to re-start the network will last no longer
than approx. 150ms, so if the minimum interval between such attempts is e.g., one minute, the
short phase of operation can be considered insignificant.

Note that all temperature levels (those for the alerts as well as those for re-start) are device-specific
and are handled on a device-internal basis. No central component supervises the temperature of a
device and decides for the device when it has to shutdown; this is completely at the device’s
discretion.

Specification Document  Copyright 1999 - 2005 MOST Cooperation

 Page 153

MOST®
Specification

MOST Specification 05/2005

3.3 Network Management
Network Management is the process by which the Network Master ensures secure communication
between applications over the MOST Network. This section describes the conditions that must be met
by the Network Master and the Network Slaves to enable safe Network Management. The tools used
for this process include the control of the System State and the administration of the Central Registry
as well as the Decentral Registries.

Section 3.3.1 contains general descriptions of Network Management. Detailed requirements of the
behavior of MOST devices regarding Network Management are described in sections 3.3.2 through
3.3.4. For more implementation specific information and examples refer to Appendix A.

3.3.1 General Description of Network Management

3.3.1.1 System Startup
This section describes the System Startup following the NetOn event.

3.3.1.1.1 Initialization of the Network

The Network Master is responsible for initializing the network at System Startup. It collects the system
configuration by requesting the configuration of each individual Network Slave; this is referred to as a
System Scan. The collected information is entered into the Central Registry.

The Network Master sets the System State to OK to indicate that the Central Registry is valid or
NotOK to indicate that the Central Registry is invalid. When the System State is OK, MOST devices
may communicate freely. When the System State is NotOK, communication is limited.

Setting the System State to NotOK resets the system from a network point of view, that is, any
network related information is reset in all Network Slaves. This event prevents the same collisions to
occur more than once.

The procedure by which the Network Master initializes the system depends on the availability of a
valid logical node address and a Central Registry.

• If there is no valid logical node address available at System Startup the Network Master resets
the network by setting the System State to NotOK before scanning the system.

• If there is a valid logical node address available at System Startup but no Central Registry the
Network Master starts to scan the system.

• If there is a Central Registry available at System Startup the Network Master must verify that
the Central Registry is still valid. If no mismatches are detected the Network Master sets the
System State to OK, completing the network initialization. If any mismatch is detected the
Network Master sets the System State to NotOK, clearing its Central Registry, before
scanning the system again.

The Network Master will set the System State to NotOK whenever an error is caused by a Network
Slave registration. The Network Master will continue to scan the system until there are no errors in
Network Slave registrations and the System State is set to OK. A transition to System State OK
indicates the completion of the network initialization.

Specification Document  Copyright 1999 - 2005 MOST Cooperation
Page 154

MOST®
Specification

MOST Specification 05/2005

3.3.1.1.2 Initialization on Application Level

After the Network Master has set the System State to OK initializations that have to do with the
interacting of multiple devices on the application layer should be performed. However, initialization of
the individual applications may start earlier. The application may now initialize communication
controlled by itself. This initialization phase is referred to as “SystemCommunicationInit”.

During SystemCommunicationInit, e.g., Notification is established, so the application of a device may
register in the Notification Matrices of those function blocks from which it desires to get status
information.

The system must be prepared for devices connecting to or disconnecting from the network (Network
Change Event) and function blocks being activated and deactivated during runtime. In these cases,
the system must run consistently without disturbances and reinitializing phases must be as short as
possible. On a Network Change Event, parts of SystemCommunicationInit must be run again, but
initialization must not be run completely due to the time this would take.

3.3.1.2 General Operation

3.3.1.2.1 Finding communication partners

When an application seeks a communication partner, that is, a function block; it requests the
whereabouts of the function block from the Network Master. The requesting application receives the
available InstIDs of the sought function block and the logical node addresses of the devices in which
they reside. Alternatively, if a specific function block is sought, the InstID may also be specified.

A controller device may store the information concerning its communication partners in a Decentral
Registry. The benefit of having a Decentral Registry is that the Network Slave does not have to
request the logical node address of its communication partners every time it needs to communicate.
The Decentral Registry must be deleted whenever the Network Master sets the System State to
NotOK.

3.3.1.2.2 Network Monitoring

The Network Master monitors the system for changes and errors. When a Network Change Event is
detected, the Network Master must find out if a device has entered or left the network. It scans the
network and reports any new information to all Network Slaves in the system. This way a device will
be notified if one of its communication partners is missing or if new potential communication partners
enter the system. The Network Master may be instructed to scan the system at any time by the
application.

3.3.1.2.3 Dynamic Function Block Registrations

It may happen that devices activate and deactivate function blocks at any time; these changes have to
be reported to the Network Master. The Network Master then updates the Central Registry and
informs all Network Slaves. This also applies for devices experiencing failures. If a device fails, an
NCE is detected by the Network Master, which then scans the system.

Specification Document  Copyright 1999 - 2005 MOST Cooperation

 Page 155

MOST®
Specification

MOST Specification 05/2005

3.3.2 System States
A MOST Network is in either of two System States, OK or NotOK. The System State reflects the
validity of the Central Registry. The Network Master builds and maintains the Central Registry as well
as distributes the System State to all Network Slaves.

The Network Master builds the Central Registry by collecting logical node addresses and function
block configuration from all Network Slaves. The system relies on a valid Central Registry, not only
because it contains the information used by controller devices to find their communication partners,
but also because it is crucial that a device is informed if one of its communication partners disappears.

The Network Master distributes the System State of the network to the Network Slaves by
broadcasting Configuration.Status() messages. The state diagram in Figure 3-19 shows the System
States and which events affect the states.

OK
(CR Valid)

Configuration.Status(OK)

Configuration.Status(New)

Configuration.Status(NotOK)

NetOn

Configuration.Status(OK)

Configuration.Status(Invalid)

NotOK
(CR Invalid)

Configuration.Status(NotOK)

Figure 3-19: States of the network are shown, as well as the status of the Central Registry

The network should be considered to be in a reset state directly following the broadcast of
Configuration.Status(NotOK) by the Network Master. Following this event, all devices delete any
network configuration related information they may have (e.g., logical node address, Central Registry,
Decentral Registry).

Sections 3.3.3 Network Master and 3.3.4 Network Slave describe device specific behavior in the
different System States as well as making transitions between states.

Specification Document  Copyright 1999 - 2005 MOST Cooperation
Page 156

MOST®
Specification

MOST Specification 05/2005

3.3.2.1 System State NotOK
System State NotOK is always entered after a NetOn event. In this state, communication must not
take place except for special applications that do not rely on a valid registry, in particular the System
Scan performed by the NetworkMaster and other, optional features that may be done on a per-device,
position-dependant basis. The system can fall back into System State NotOK at any time by
declaration of the Network Master.

Also, the system is regarded as being in System State NotOK after NetBlock.Shutdown.Start(Execute)
has been broadcast. An optional delay may be specified on a per-system basis between the
broadcast of this message and the point in time where the change of state becomes effective. The
logical node addresses are not re-calculated upon this implicit change of state; this is only done when
the message Configuration.Status(NotOK) has been received.

Event
Configuration.Status()

Transition to Cause Effect

NotOK No transition - Un-initialized NodeAddress in
Network Master
- Erroneous registration by network
slave.

Network Configuration Reset:
- Clear Central Registry
- Clear Decentral Registries
- Recalculate NodeAddress

OK SystemState OK - Central Registry verified - Network configuration available
in Central Registry
- Set up Decentral Registries,
where necessary.
- (Re-) initialize applications.

Table 3-10: Events in System State NotOK (refer to Figure 3-19)

Specification Document  Copyright 1999 - 2005 MOST Cooperation

 Page 157

MOST®
Specification

MOST Specification 05/2005

3.3.2.2 System State OK
While in System State OK, the Central Registry is valid. So the exact set of function blocks in the
system, each with its attributes InstID and DeviceID, is defined. Therefore, application communication
(i.e. messages with FBlockIDs other than NetBlock or NetworkMaster are allowed) may take place on
control and asynchronous channels. All the dynamic communication on application level within the
distributed system should be done only in System State OK.

Event
Configuration.Status()

Transition to Cause Effect

NotOK SystemState NotOK - Erroneous registration by network
slave.

Network Configuration Reset:
- Clear Central Registry
- Clear Decentral Registries
- Recalculate NodeAddress

OK No transition - Large update to the Central
Registry

- Clear Decentral Registries

New No transition - New FBlocks are available - Notify application
Invalid No transition - FBlocks were removed - Notify application

Table 3-11: Events in System State OK (refer to Figure 3-19)

Table 3-11 shows the effects of a Configuration.Status(NotOK) event in System State OK from a
Network Management point of view. In addition, the following tasks have to be performed by all
devices:

• Empty notification lists.

• Destroy all windows on LongArrays.

• Every function block containing synchronous sinks: set the Mute property to "ON" for all sinks
and disconnect them.

• Every function block containing synchronous sources: All sources must route zeroes (signal
mute) to its channels for a time tCleanChannels. After time tCleanChannels all synchronous sources
must de-allocate the channels they have allocated and stop routing data to the network.

• The Connection Manager must delete its SyncConnectionTable.

Specification Document  Copyright 1999 - 2005 MOST Cooperation
Page 158

MOST®
Specification

MOST Specification 05/2005

3.3.3 Network Master
The device that contains the NetworkMaster function block is referred to as the Network Master.
There must be one, and only one, Network Master in a MOST Network.

The Network Master controls the System State and administrates the Central Registry. The Network
Master monitors the network for certain events and continuously manages incoming information from
Network Slaves about their current function block configuration and whenever necessary informs all
Network Slaves about updates to the Central Registry.

3.3.3.1 Setting the System State
The Network Master distributes the System State by broadcasting Configuration.Status messages.
More information about the different System States and Configuration.Status messages is available in
section 3.3.2.

3.3.3.1.1 Setting the System State to OK

By setting the System State to OK, the Network Master confirms the validity of the Central Registry.
Therefore, before setting the System State to OK, the Network Master must make sure that all
functional addresses are unique in the system (section 2.3.2.3).

The Network Master must do the following when setting the System State to OK:

1. Broadcast Configuration.Status(OK).

2. Trigger initialization of applications in own device.

3. Continue to maintain the Central Registry.

3.3.3.1.2 Setting the System State to NotOK (Network Reset)

By broadcasting Configuration.Status(NotOK), the Network Master resets the system (from a network
point of view). Note that this does not necessarily imply a state change, as described in section 3.3.2.

The Network Master must do the following when setting the System State to NotOK:

1. Broadcast Configuration.Status(NotOK).

2. Clear the Central Registry.

3. Derive and set the new logical node address (section 3.4.1).

4. Wait a time tWaitBeforeScan after Configuration.Status(NotOk) was broadcasted and perform a
System Scan (section 3.3.3.4).

Specification Document  Copyright 1999 - 2005 MOST Cooperation

 Page 159

MOST®
Specification

MOST Specification 05/2005

3.3.3.2 Central Registry
The Network Master generates the Central Registry during the initialization of the network and it
continues to administrate it until Network Shutdown (section 3.2.4.2). The Central Registry is an
image of the physical and logical system configuration. It contains the logical node address and the
respective function blocks of each device:

Rx/TxLog Rx/TxPos FBlockID InstID
0x0100 0 AudioDiskPlayer 1
 NetworkMaster 10
 ConnectionMaster 1
0x0101 1 AudioDiskPlayer 2
0x0102 2 AM/FMTuner 1
 AudioTapeRecorder 1

0x0103 3 AudioAmplifier 2

Etc.

MaxNode MaxNode HumanMachineInterface 1

Table 3-12: Example of a Central Registry

3.3.3.2.1 Purpose

The Central Registry is used when the Network Master checks the system configuration and when
devices are searching for communication partners or their physical addresses.

3.3.3.2.2 Contents

The Central Registry must contain the logical node address and the respective functional addresses
(combination of FBlocks and InstIDs) of the function blocks in each responding MOST device. This
information must be made available to all Network Slaves.

3.3.3.2.3 Persistence of the Central Registry

It is optional to store the Central Registry between system runs; however, the Network Master may
store the Central Registry only after Network Shutdown in its proper form (section 3.2.4.2).

3.3.3.2.4 Responsibility

Any new information gained regarding the system configuration must be entered into the Central
Registry and distributed to all Network Slaves as described in section 3.3.3.6.

The Network Master must only start supervising and store errors for those Network Slaves, that have
answered requests and which are registered in the Central Registry.

3.3.3.2.5 Responding to Requests for Information from the Central Registry

The Network Master must respond to requests for CentralRegistry.Get() from the Network Slaves
while the System State is OK. This is described in section 2.3.7.

Specification Document  Copyright 1999 - 2005 MOST Cooperation
Page 160

MOST®
Specification

MOST Specification 05/2005

3.3.3.2.6 Secondary Nodes

In the Central Registry it must be marked, which node is the Primary Node to a certain Secondary
Node. The Central Registry must be sorted in such a way, that the entry of a Secondary Node directly
succeeds the entry of the Primary Node.

For completing the entries of Secondary Nodes in the Central Registry, each Secondary Node is
registered with a single function block having FBlockID.InstID = 0xFC.0.

Note that there may be more than one secondary node in a system. This is the sole exception to the
rule of unambiguousness of the entries in the Central Registry. Secondary Nodes are described in
section 3.2.3.

3.3.3.3 Specific Behavior During System Startup
After the NetOn event the Network Master must initialize the system. This process depends on the
availability of a valid1 logical node address and a Central Registry.

3.3.3.3.1 Valid Logical Node Address Not Available

If the Network Master does not have a valid logical node address available at System Startup it
assumes that the entire system must be re-initialized. The Network Master must set the System State
to NotOK (section 3.3.3.1.2) and then start a System Scan (section 3.3.3.4).

3.3.3.3.2 Valid Logical Node Address Available but No Central Registry

If the Network Master has a valid logical node address but no Central Registry available at System
Startup, it must restore its logical node address and then start a System Scan (section 3.3.3.4).

3.3.3.3.3 Valid Logical Node Address and a Central Registry Available

If the Network Master has a valid logical node address and a Central Registry available at System
Startup, it must restore its logical node address and then verify that the Central Registry is still valid.
This procedure is referred to as a Verification Scan (section 3.3.3.8).

3.3.3.3.4 Stable Network

The NetworkMaster should wait a time tWaitBeforeScan before scanning the system for the first time. This
latency time allows the system to stabilize after NetOn event. This latency time must not exceed
tWaitAfterNCE.

1 A valid logical node address is any address within the dynamic or static address ranges as defined in
section 3.1.5.1.[0]

Specification Document  Copyright 1999 - 2005 MOST Cooperation

 Page 161

MOST®
Specification

MOST Specification 05/2005

3.3.3.4 Scanning the System (System Scan)
The Network Master scans the system at System Startup and after a Network Change Event (NCE). It
may also be instructed to scan the system at any other time.

The Network Master scans the system by requesting the function block configuration of each device.
The responses from the Network Slaves are interpreted as described in section 3.3.3.5. Any
information gained concerning the configuration of the network must be written to the Central Registry
and reported to all Network Slaves as described in section 3.3.3.6.

3.3.3.4.1 Configuration Request Description

During a network scan, the Network Master requests NetBlock.FBlockIDs.Get() from each Network
Slave.

3.3.3.4.2 Addressing

The Network Master scans the system by node position addressing. The logical node address of the
requested Network Slave is contained in the response message.

3.3.3.4.3 Non Responding Network Slaves

The Network Master must wait until the expiration of tWaitForAnswer for a reply from a Network Slave. The
Network Master must send another request to the Network Slave as described in section 3.3.3.4.4.

3.3.3.4.4 Retries of Non Responding Network Slaves

When a Network Slave does not respond to a request, the Network Master must try again after
tDelayCfgRequest1 or tDelayCfgRequest2. tDelayCfgRequest1 is used for the first 20 request attempts after entering
NetInterfaceNormalOperation, after that tDelayCfgRequest2 is used.

Refer to section 3.9 for more information about timers.

3.3.3.4.5 Network Slave Continuous cause for System State NotOK

The Network Master should ignore a Network Slave which has caused the Network Master to
broadcast Configuration.Status(NotOK) three times in succession. The Network Master should ignore
the Network Slave until the next NCE or the next System Startup.

3.3.3.4.6 Duration of System Scanning

The Network Master must continue to scan the system until all Network Slaves have answered the
requests. Refer also to section 3.3.3.4.4.

3.3.3.4.7 Reporting the Results of a System Scan without Errors

The Network Master must report the result of the System Scan if it has any new information to
distribute, such as a change in System State or changes in the function block configuration of one or
more Network Slaves. Refer to sections 3.3.3.1 and 3.3.3.6.

Specification Document  Copyright 1999 - 2005 MOST Cooperation
Page 162

MOST®
Specification

MOST Specification 05/2005

3.3.3.5 Invalid Registration Descriptions
The Network Master interprets the incoming registrations and determines if the registration is
accepted. The following are considered to be invalid registrations, but all are not considered
erroneous since some may be corrected by the Network Master.

3.3.3.5.1 Un-initialized Logical Node Address

If any Network Slave, at any time, registers an un-initialized logical node address (section 3.1.5.1), the
Network Master must set the System State to NotOK (section 3.3.3.1.2), interrupting any ongoing
System Scan.

3.3.3.5.2 Invalid Logical Node Address

When the Network Master receives a registration from a Network Slave, in which its logical node
address is outside of the specified address range, the Network Master must set the System State to
NotOK (section 3.3.3.1.2), interrupting any ongoing System Scan.

Refer to section 3.4.1 for more information about the valid address range.

3.3.3.5.3 Duplicate Logical Node Addresses

When the Network Master receives a registration from a Network Slave, in which its logical node
address has already been registered by another Network Slave, the Network Master must set the
System State to NotOK (section 3.3.3.1.2), interrupting any ongoing System Scan.

3.3.3.5.4 Duplicate InstID Registrations

The Network Master is responsible for the uniqueness of functional addresses (combination of
FBlockIDs and InstID) within the entire system. The Network Master must try to resolve the issue of
two or more Network Slaves registering identical functional addresses.

The Network Master decides a new InstID for the last registered function block. It then sets the new
InstID in the corresponding Network Slave. If the new InstID was accepted by the Network Slave, the
Network Master enters the new value into the Central Registry. The Network Master must inform all
Network Slave as described in section 3.3.3.6 or by ultimately setting the System State to OK.

If the request to change the InstID of a conflicting function block is not successful, the Network Master
must not include the function block into the Central Registry.

3.3.3.5.5 Error Response

A Network Slave that answers a request from the Network Master with an error must be treated as a
non-responding Network Slave (section 3.3.3.4.4). The exception to this rule is the correct response
of a Secondary Node (section 3.2.3).

Specification Document  Copyright 1999 - 2005 MOST Cooperation

 Page 163

MOST®
Specification

MOST Specification 05/2005

3.3.3.6 Updates to the Central Registry
The Network Master must inform all Network Slaves about changes of the system configuration. This
information may become available during a System Scan or as Network Slaves make additional
registrations, which are not requested by the Network Master.

This section describes how the Network Master handles changes to the system configuration while in
System State OK.

3.3.3.6.1 Disappearing Function Blocks in System State OK

If the Network Master receives a registration from a Network Slave in which there is one or more
function blocks missing compared to the last registration from the same Network Slave, the Network
Master must update the Central Registry and inform all Network Slaves about the missing function
blocks. This is done by broadcasting:

Configuration.Status(Invalid, DeltaFBlockIDList)

The DeltaFBlockIDList parameter is a list of the previously registered but now invalid function blocks.
The DeltaFBlockIDList must only contain five function blocks, if there are more than five invalid
function blocks, several single messages must be sent.

When one or more function blocks have disappeared the Network Master should inform all Network
Slaves about the missing function blocks as quickly as possible, even if this information is gained
while scanning the network.

3.3.3.6.2 Appearing Function Blocks in System State OK

If the Network Master receives a registration from a Network Slave in which there is one or more
additional function blocks compared to the last registration from the same Network Slave, the Network
Master must update the Central Registry and inform all Network Slaves about the new function block.
This is done by broadcasting:

Configuration.Status(New, DeltaFBlockIDList)

The DeltaFBlockIDList parameter is a list of the new function blocks. The DeltaFBlockIDList must only
contain five function blocks, if there are more than five new function blocks, several single messages
must be sent.

If this information is gained while scanning the network, the Network Master may continue to scan the
system before it informs all Network Slaves.

3.3.3.6.3 System scan without any change in Central Registry

The Network Master shall broadcast a Configuration.Status(New) with an empty list when a network
scan that was triggered by an NCE did not detect any changes to the registry.

3.3.3.6.4 Large Updates to the Central Registry in System State OK

If the Network Master receives registrations, which result in large updates to the Central Registry, it
either broadcasts the respective sequence of New and Invalid messages or just a
Configuration.Status(OK). Both methods indicate to the Network Slaves that there is a new, updated
Central Registry available. The latter method requires the Network Slaves to fetch the differences
themselves.

3.3.3.6.5 Non-responding Devices in System State OK

If a Network Slave, which has registered in the Central Registry since startup, does not respond to the
request before tWaitForAnswer expires, the Network Master removes the Network Slave from the Central
Registry and informs all Network Slaves as described in section 3.3.3.6.1.

Specification Document  Copyright 1999 - 2005 MOST Cooperation
Page 164

MOST®
Specification

MOST Specification 05/2005

3.3.3.7 Miscellaneous Network Master Requirements

3.3.3.7.1 Network Change Event (NCE)

When an NCE is detected, the Network Master must start a complete System Scan (section 3.3.3.4)
after tWaitAfterNCE. This also applies to a Verification Scan at System Startup (section 3.3.3.3). Any scan
in progress when the NCE is detected must be interrupted and restarted.

3.3.3.7.2 Positioning of the Function Block NetworkMaster in the MOST Network

The NetworkMaster function block must be located in a MOST device with a node position address
such that it fulfills the requirement of tMPRDelay (refer to section 3.9). The NetworkMaster function block
is normally located in the same MOST device as the TimingMaster.

3.3.3.8 Verifying the Central Registry at System Startup (Verification Scan)

The Verification Scan is only performed if there is a Central Registry available at System Startup. The
Network Master performs a Verification Scan to verify that the Central Registry is still valid, that is, it is
a valid representation of the current system configuration. The Verification Scan is basically a normal
System Scan (section 3.3.3.4) with the difference that all responses from the Network Slaves have to
match the Central Registry exactly.

The Verification Scan finishes and the System State is set to OK when the Network Master has
requested all Network Slaves (ignoring nodes that do not respond) and the received registrations are
without differences to the Central Registry (logical node address and contained function blocks).

The Verification Scan finishes and the System State is set to NotOK if any registration does not match
the buffered Central Registry. The Network Master must perform a normal System Scan after setting
the System State to NotOK.

Note that Missing Devices are tolerated during a Verification Scan (section 3.3.3.8.1).

3.3.3.8.1 Missing Devices

A Missing Device is a non-responding Network Slave (section 3.3.3.4.3) that is available in the
buffered Central Registry but has not replied to any requests from the Network Master since startup;
therefore, its existence in the system cannot be confirmed.

A Network Slave is considered missing if it does not respond to a request from the Network Master
before the expiration of tWaitForAnswer during a Verification Scan. When the Network Slave registers
correctly it is no longer considered missing and is entered in the Central Registry.

3.3.3.8.1.1 Requesting Missing Devices
If there is a Missing Device in the system, the Network Master must try to request the Missing Device
again after tDelayCfgRequest1 or tDelayCfgRequest2 has expired. tDelayCfgRequest1 is used for the first 20 request
attempts after entering NetInterfaceNormalOperation, after that tDelayCfgRequest2 is used. The Network
Master must continue to do so until the Network Slave has responded.

Refer to section 3.9 for more information about timers.

Specification Document  Copyright 1999 - 2005 MOST Cooperation

 Page 165

MOST®
Specification

MOST Specification 05/2005

3.3.3.8.1.2 Matching Response of Missing Device
When a Missing Device registers and the registration matches the registration in the buffered Central
Registry the Network Master must distribute this information as a change in the system configuration
(section 3.3.3.6).

3.3.3.8.1.3 Non-matching Response of Missing Device
When a Missing Device makes a registration and the registration does not match the Central Registry
exactly, the Network Master must change the previous entry and distribute the new information as a
change in the system configuration (section 3.3.3.6).

3.3.3.8.1.4 Receiving a Central Registry Request for a Missing Function Block
The Network Master must only search the verified entries in the Central Registry if a Network Slave
requests the whereabouts of a communication partner (section 3.3.1.2.1). This means that the
function blocks of a Missing Device must not be reported, instead an error code must be returned (see
section 2.3.7).

Specification Document  Copyright 1999 - 2005 MOST Cooperation
Page 166

MOST®
Specification

MOST Specification 05/2005

3.3.4 Network Slave
All devices that do not contain the NetworkMaster function block are called Network Slaves. A
Network Slave must keep the Network Master informed about its current function block configuration.

3.3.4.1 Decentral Registry
Devices that control other devices should build a Decentral Registry in which it registers its
communication partners. A Decentral Registry contains the functional addresses and the respective
logical node address:

Functional Address
(FBlockID.InstID)

Device Containing the FBlock
(Logical Node Address = DeviceID)

AudioAmplifier.1 0x0105
AudioAmplifier.2 0x0103
AM/FMTuner.1 0x0107
AudioDiskPlayer.1 0x0107

Table 3-13: Example of a Decentral Registry

3.3.4.1.1 Building a Decentral Registry

The information stored in the Decentral Registry is gained from the Central Registry. The Decentral
Registries are only re-built on demand; that is, not directly following a transition to System State OK.

3.3.4.1.2 Updating the Decentral Registry

The function block entries stored in the Decentral Registry must match the entries of the respective
function block in the Central Registry. When the Network Master informs of updates to the Central
Registry; the Decentral Registry must be updated accordingly for the registered function blocks.

3.3.4.1.3 Deleting the Decentral Registry

The Decentral Registry must be cleared when the Network Master broadcasts
Configuration.Status(NotOK) and whenever the device is removed from power.

3.3.4.1.4 Persistence of the Decentral Registry

It is optional to store the Decentral Registry between system runs; however, a Network Slave may
store the Decentral Registry only after Network Shutdown in its proper form (section 3.2.4.2).

Specification Document  Copyright 1999 - 2005 MOST Cooperation

 Page 167

MOST®
Specification

MOST Specification 05/2005

3.3.4.2 Specific Startup Behavior
Following the NetOn event the Network Slave initializes its logical node address and services requests
from the Network Master.

3.3.4.2.1 Behavior When a Valid Logical Node Address is Not Available at System Startup

If the Network Slave does not have valid1 logical node address available at System Startup, it must set
its logical node address to the value of an uninitialized logical node address (section 3.1.5.1) and
services requests from the Network Master until the Network Master sets the System State.

3.3.4.2.2 Behavior When a Valid Logical Node Address is Available at System Startup

If the Network Slave has a valid1 logical node address stored from the previous system run, it uses
that logical node address and services requests from the Network Master until the Network Master
sets the System State.

3.3.4.2.3 Deriving the Logical Node Address of the Network Master

The logical node address of the Network Master must be derived from the Configuration.Status
message at each System Startup.

1 A valid logical node address is any address within the dynamic or static address ranges as defined in
section 3.1.5.1.

Specification Document  Copyright 1999 - 2005 MOST Cooperation
Page 168

MOST®
Specification

MOST Specification 05/2005

3.3.4.3 Normal Operation of the Network Slave

3.3.4.3.1 Behavior in System State OK

A Network Slave may communicate freely while the System State is OK.

3.3.4.3.2 Behavior in System State NotOK

While the System State is NotOK a Network Slave must not initiate any communication except for
special applications that do not rely on a valid Central Registry such as optional features that can be
done on a per-device, position-dependant basis.

A Network Slave must not send a NetBlock.FBlockIDs.Status(FBlockIDList) message in System State
NotOK without being requested explicitly by the NetworkMaster.

3.3.4.3.3 Responding to Configuration Requests by the Network Master

The Network Slave responds to requests for function block configuration from the Network Master at
all times, regardless of the current System State. The response must be sent before the expiration of
tAnswer.

The Network Slave must report all function blocks that are currently active from a network point of
view. The Network Slave must not include NetBlock nor function block EnhancedTestability when
reporting its function block configuration. If the Network Slave does not have any active function
blocks it must respond with an empty FBlockIDList.

3.3.4.3.4 Reporting Configuration Changes to the Network Master

When the function block configuration of a Network Slave changes, it must report this change to the
Network Master; however, it must not do so if the current System State is NotOK (section 3.3.4.3.2).

3.3.4.3.5 Failure of a Function Block in a Network Slave

This behavior is described in section 3.2.5.5.

3.3.4.3.6 Failure of a Network Slave Device

This behavior is described in section 3.2.5.7.

3.3.4.3.7 Unknown System State

If the Network Slave does not know the current System State, it must assume that the System State is
NotOK. For determining of system state refer to section 3.3.4.3.8.

3.3.4.3.8 Determining the System State

The current System State must be determined from the Configuration.Status message, which is
broadcasted by the Network Master. The Config.Status (NotOK) implies the system status being
NotOK. All other Config.Status messages imply the system state is OK e.g.,
Config.Status(Ok/New/Invalid/New,<empty>/Invalid,<empty>).

Specification Document  Copyright 1999 - 2005 MOST Cooperation

 Page 169

MOST®
Specification

MOST Specification 05/2005

3.3.4.3.9 Finding Communication Partners

The Central Registry must be used if the application of a device seeks a logical node address. Note
that this must be done only if the information is not already available in a Decentral Registry (section
3.3.4.1).

3.3.4.3.10 Reaction to Configuration.Status(OK) When in System State NotOK

When the Network Master sets the System State to OK the Network Slave:

1. Uses its current Decentral Registry or rebuilds a Decentral Registry when necessary.

2. (Re-) initializes the application.

The System State is set to OK. For additional information, refer to section 3.3.2.

3.3.4.3.11 Reaction to Configuration.Status(OK) When in System State OK

The Network Master sends this message to inform all Network Slaves that there is a large update to
the Central Registry. All Network Slaves must:

1. Clear any Decentral Registry.

2. Rebuild a Decentral Registry when necessary.

3. The application must secure all synchronous data associated with any disappearing function
blocks.

The System State remains in OK. For additional information, refer to section 3.3.2.

3.3.4.3.12 Reaction to Configuration.Status(NotOK) when in System State NotOK

The Network Master sends this message to reset all Network Slaves from a network point of view. All
Network Slaves must:

1. Clear any Decentral Registry.

2. Derive and set the new logical node address (section 3.4.1).

The System State remains in NotOK. For additional information, refer to section 3.3.2.

3.3.4.3.13 Reaction to Configuration.Status(NotOK) When in System State OK

When the Network Master sets the System State to NotOK the Network Slave must:

1. Clear any Decentral Registry.

2. Derive and set the new logical node address (section 3.4.1).

3. Empty notification lists.

4. Destroy all windows on LongArrays.

5. Every function block containing synchronous sinks: set the Mute property to "ON" for all sinks
and disconnect them.

6. Every function block containing synchronous sources: All sources must route zeroes (signal
mute) to its channels for a time tCleanChannels. After time tCleanChannels all synchronous sources
must de-allocate the channels they have allocated and stop routing data to the network.

7. Service requests from the Network Master while waiting for the System State to be set to OK.

The System State is set to NotOK. For additional information, refer to section 3.3.2.

Specification Document  Copyright 1999 - 2005 MOST Cooperation
Page 170

MOST®
Specification

MOST Specification 05/2005

3.3.4.3.14 Reaction to Configuration.Status(New)

One or more function blocks have entered the system and the Central Registry has been updated with
the function blocks supplied in the message. These function blocks should be added to the Decentral
Registry, if they are used by the device.

This message is only sent in System State OK. The System State remains in OK. For additional
information, refer to section 3.3.2.

3.3.4.3.15 Reaction to Configuration.Status(Invalid)

One or more function blocks have left the system and the function blocks supplied in the message
have been removed from the Central Registry. These function blocks have to be removed from the
Decentral Registry if entered. The application must secure any synchronous data associated with the
disappearing function block.

This message is only sent in System State OK. The System State remains in OK. For additional
information, refer to section 3.3.2.

Specification Document  Copyright 1999 - 2005 MOST Cooperation

 Page 171

MOST®
Specification

MOST Specification 05/2005

3.4 Accessing Control Channel

3.4.1 Addressing

In a MOST network, nodes in a ring are addressed. The MOST Network Interface Controller provides
five different types of addresses, which are described below.

• Internal Node Communication Address
This address is reserved for internal communication in a node

• Node Position Address (Rx/TxPos)
The Node Position Address is made up by the physical position of the MOST Network
Interface Controller. The Node Position Address is called RxPos for a receiving node, and
TxPos for a transmitting node.

• Logical Node Address (Rx/TxLog)
User definable address. It must be unique in the system, and is called RxLog for receiving
nodes and TxLog for transmitting nodes.

• Group address
Provides access to a group of devices.

• Broadcast address
All devices.

Addressing is done in the following way:

Node Position Address:

A node position address is unique by definition, but it has the disadvantage that the receiving
MOST Network Interface Controller does not report the sender’s node position address, but
the sender's logical node address. This happens only when using node position addressing.
For this reason, node position addressing is not used under normal operation conditions. It is
used by the NetworkMaster only for administrative tasks, such as during initialization. A node
position address can be determined using the NodePositionAddress function in the
NetBlock. It consists of an offset plus the physical position value:

Rx/TxPos = 0x0400 + Pos

Pos = 0 for Timing Master
Pos = 1 for first device in ring...

Logical Node Address:

Logical node addressing is used by all nodes to address a single node. The section below
describes the default procedure for assigning logical node addresses.

A logical node address must be unique even if there are multiple devices of the same type.
Therefore, it is derived from the unique node position address. During initialization of the
network, the logical node address is calculated by each device as follows:

Rx/TxLog = 0x0100 + Pos

Specification Document  Copyright 1999 - 2005 MOST Cooperation
Page 172

MOST®
Specification

MOST Specification 05/2005

The device containing the Timing Master is located at physical position zero; it will have the
logical node address 0x0100. A device at position five in the ring will have address 0x0105.

Another approach is to assign certain address ranges with respect to the functionality of
devices. That means, for example, that the first video display module in a network gets
address 0x0200, the second 0x0201, etc., while the first active amplifier gets address 0x0188.

The logical node address can be requested from the function NodeAddress in the NetBlock.

The same logical node address must be used between two successive system runs unless the
device is removed from power. If the device is removed from power it is optional to store the
logical node address. After first power up, the logical node address is normally set to 0xFFFF
(refer to sections 3.3.3.3 and 3.3.4.2) but it may also be set to a predefined system specific
value.

Group Address:

The group address can be requested from function GroupAddress in the NetBlock, it can be
modified using this function if required. The default procedure for deriving a group address is
to take the FBlockID of the function block that is most characteristic for the device:

GroupAddress = 0x0300 + FBlockID

The function block (FBlockID) that is reported first in case of a request for the FBlockIDs is
typically the most descriptive for the device.

Another approach for example, is that the system integrator may choose to use a hard coded
group address for the whole system, i.e. that each device comes up with the same group
address.

Groups can be built dynamically by modifying group addresses.

The group address is stored in unbuffered RAM, so it is lost if the device loses power for some
time. If the device stays powered, the group address is kept. In case power gets lost, the
default value (FBlockID) must be restored.

Broadcast Address:

Broadcast addressing requires a great deal of system resources and therefore should be used
for administrative tasks only.

Table 3-14: Functions in NetBlock that handle addresses

FUNCTIONS
FktID OPType Sender Receiver Explanation
NodePositionAd
dress

Get Controller NetBlock Requesting Node Position Address

 Status NetBlock Controller Answer
NodeAddress Get Controller NetBlock Requesting Logical Node Address
 Status NetBlock Controller Answer
GroupAddress Get Controller NetBlock Requesting Group Address
 Status NetBlock Controller Answer
 Set Controller NetBlock Setting Group Address

Specification Document  Copyright 1999 - 2005 MOST Cooperation

 Page 173

MOST®
Specification

MOST Specification 05/2005

3.4.2 Assigning Priority Levels

Despite the high capacity of the control channel, temporary overload situations are possible, for
example, during system initialization. Nevertheless, it must be possible to send important messages in
that case. To do this, a fair arbitration mechanism is implemented in the MOST Network Interface
Controller. For each control message a priority level can be assigned (range 0x00, …, 0x0F with value
0x00 = lowest priority).

3.4.3 Low Level Retries

In case the sending of a control message is not successful, the MOST Network Interface Controller
can re-send the message automatically. Registers specify the number of retries and the delay
between the retries. Typically, these values should not be changed, however they can be modified to
fine tune the system.

3.4.4 High Level Retries

High Level Retries are not planned at this time, since the expenditure in software development would
be too great for the expected results. All devices have to safeguard the ability to accept messages
within the interval of time given by the low level retries.

Specification Document  Copyright 1999 - 2005 MOST Cooperation
Page 174

MOST®
Specification

MOST Specification 05/2005

3.4.5 Basics for Automatic Adding of Physical Address

Since applications know only functional but not physical addresses, a protocol that is transported must
be complemented by the physical address (DeviceID). There are two possible ways to achieve this.

One way is when the application answers a request. In this case it already has the DeviceID of the
target node because it was reported during the request. The other way is when the application is
sending a protocol and does not know the DeviceID of the target. In this case it sets the DeviceID to
0xFFFF. The ID is complemented by the Network Service and inserted into the MOST telegram as
TxAdr. Refer also to sections 3.3.3.2 and 3.3.4.1 for information regarding the Central Registry and
the Decentral Registries respectively.

Please note:
When seeking the logical node address of a communication partner, a device performs the
following flow:

Send message

Need for sending an
application message

Request Logical
Node Address of

partner from Central
Registry

Error ! Report to
application

End

Logical Node Address of
partner found?

yesLogical Node
Address of partner

available in De-central
Registry

no

yes

no

Store adress in De-
central registry.

Figure 3-20: Seeking the logical address of a communication partner

Specification Document  Copyright 1999 - 2005 MOST Cooperation

 Page 175

MOST®
Specification

MOST Specification 05/2005

3.4.6 Handling Overload in a Message Sink

The MOST Network Interface Controller informs the sender’s Network Service by a NAK error
message indicating that the receiving node has rejected a telegram although the low level retries were
used. This is an indicator for a momentary overload, or a defect. The Network Service passes the
NAK error message through to the application, which has to decide what needs to be done (retry,
reject, postpone). The error is stored as Error_NAK.

If that telegram belongs to a connection where data is sent continuously from a sender to a receiver,
an optional mechanism can be implemented, which adapts the telegram transfer rate to the speed of
the data sink. A simple mechanism may look like this:

Sending a telegram

Telegram
rejected?

Last Telegram
processed?

No

No

No

End

Retry telegram?

Postpone
message

Reject entire message

Yes

Yes

No

Yes

Yes

Adapting transfer rate
in connections

Figure 3-21: Possible mechanism to adapt transfer rates to the speed of a data sink

It is assumed here, that errors due to incorrect address, or CRC error are handled “on top” of that
mechanism. “Message” refers to the entire amount of data to be sent. A telegram is that portion of
data, which can be transported on the Control Channel. It transports a part of the entire message.
Rejecting a telegram means, that the target node could not process it due to an occupied receive
buffer. In that case, the MOST Network Interface Controller has already run its low level retries. Now
the application has three selections:

1.) The telegram can be sent again, thus having additional low level retries available.

2.) The entire message can be rejected, e.g., because it is no longer relevant.

3.) The entire message can be postponed, i.e., sent later.

Specification Document  Copyright 1999 - 2005 MOST Cooperation
Page 176

MOST®
Specification

MOST Specification 05/2005

3.4.7 MOST Message Services

3.4.7.1 Control Message Service

Via the MOST Network Interface Controller, MOST telegrams can be sent and received which consist
of a sender or receiver address respectively (Rx/TxAdr), and a maximum number of 17 data Bytes.

 Data area of MOST Network Interface Controller = 17 Byte

16 Bit

Rx/TxAdr

The Network Service provides a mechanism, which is called control message service (CMS). It
handles the setting and reading of the registers of the MOST Network Interface Controller.

3.4.7.2 Application Message Service (AMS) and Application Protocols

MOST Network Service provides three different types of transmissions via the control channel. Two of
them are mandatory for each device:

Control
Channel

Application Message Service
(Single + Segmented)

Control
Channel

MOST
High

Protocol

Control Message Service

Network Service

Figure 3-22: Network Service: Services for control channel

• Single Transfer: Data packets up to 12 Bytes are transmitted in a single telegram.

• Segmented Transfer: Commands and status messages with a length greater than 12 Bytes
are transported by multiple telegrams. These segmented transfers have a maximum length of
65536 Bytes.

Specification Document  Copyright 1999 - 2005 MOST Cooperation

 Page 177

MOST®
Specification

MOST Specification 05/2005

Single as well as segmented transfers are based on the application message service (AMS), which is
mandatory for all MOST Network Services. In addition to that, a third transmission procedure is
defined:

• MOST High Protocol: For connections, that is, the transmission of data streams or the
transmission of larger data packets, a higher transport protocol, the MOST High Protocol can
be used, which is derived from the well-known Transport Control Protocol (TCP). It uses
some of the mechanisms defined by TCP, but can only be used for communication within the
MOST network. MOST High Protocol transports data and could be used for transporting data
coming from the external world (GSM) that is secured by the “real” TCP.

As already described in section 2.3.2 on page 38, protocols of the following type must be transmitted:

DeviceID.FBlockID.InstID.FktID.OPType.Length (Parameter)

The application message service (AMS), is based on the control message service (CMS). MOST
telegrams transport application protocols. Each telegram is divided up as follows:

 Data area of MOST Network Interface Controller = 17 Byte

16 Bit 8 Bit 8 Bit 12 Bit 4 Bit 4 Bit 4 Bit 8 Bit 8 Bit 8 Bit

DeviceID

FBlock
ID

Inst.
ID

Fkt
ID

OP
Type

Tel
ID

Tel
Len

Data 0 Data 1 ... Data 11

The parts of the application protocol are cross-hatched. The length of the application protocol is not
transmitted directly. It has no meaning on telegram level, since several telegrams may be required to
transport one protocol. Nevertheless, length is transmitted indirectly via TelLen and MsgCnt and must
be restored on the receiver’s side.

TelID: Identification of kind of telegram

Meaning TelID Data 0 =

MsgCnt
Single Transfer 0 Data 0

1st telegram Segmented Transfer 1 0x00
2nd telegram Segmented Transfer 2 0x01

… 2 …
… 2 0xFF
… 2 0x00
… 2 …

(n-1). Telegram Segmented Transfer 2 0x(n-1)
Last telegram Segmented Transfer 3 0xn

MOST High Protocol User data 8
MOST High Protocol Control data 9

TelLen: = 0...12 specifies the length of the data field, i.e., the number of Bytes after TelLen;

 0 means no data Byte

Data 0-Data 11: Data Bytes

Specification Document  Copyright 1999 - 2005 MOST Cooperation
Page 178

MOST®
Specification

MOST Specification 05/2005

3.5 Handling Synchronous Data

3.5.1 MOST Network Service API

The MOST Network Interface Controller provides mechanisms for administrating synchronous
channels. In addition to that, the Network Service provides an API to simplify the use of those
mechanisms.

Control
Channel

Application Message Service
(Single + Segmented)

Control
Channel

MOST
High

Protocol

Control Message Service

Sync
Channel

Allocation
Service

Network Service

Figure 3-23: Network Service for the synchronous channel

On the network, 60 Bytes for synchronous and asynchronous transport are available per frame. A
certain number of these channels can be used for synchronous data transfer. Here, several channels
can be clustered to a synchronous connection for an application. Channels are grouped together into
groups of maximum 8 channels. Every group is then assigned a Connection Label, which is the
number of the lowest channel in the group. Using connection labels makes it easier to handle
connections spanning several groups.

Access to the channels within a device (putting data onto the channels, or getting data from the
channels) is done through the source data ports of the MOST Network Interface Controller in several
different modes. Connecting the source ports with the channels is controlled via the Routing Engine
(RE).

Specification Document  Copyright 1999 - 2005 MOST Cooperation

 Page 179

MOST®
Specification

MOST Specification 05/2005

3.5.2 Function Block Functions

On the application level, different basic functions in sources and sinks are realized, which serve the
administration of synchronous connections. They themselves access the routines of the Network
Service. The function block functions can be categorized into three categories:

• Functions that represent the whole device and are located in NetBlock.
• Functions that provide information about both sources and sinks within a function block.
• Functions that deal specifically with only sources or sinks within a function block.

3.5.2.1 NetBlock

NetBlock provides the following method to the network:

• SourceHandles
A controller can request information of which function block is using a specific connection. To
get the information it asks:

Controller -> Slave: NetBlock.Pos.SourceHandles.Get (Handle)

Since there can be several function blocks in a device using the same connection, the answer
is:

Slave -> Controller: NetBlock.Pos.SourceHandles.Status

 (Handle, FBlockID.InstID,
 Handle, FBlockID.InstID,
 ...)

In case the handle is not used, the following error is reported:

Slave -> Controller: NetBlock.Pos.SourceHandles.Error (0x07, 0x01, Handle)

If the controller specifies 0xFF as handle, it gets the handles of all connections used in the
device, and the IDs of the function blocks using them.

Please note: the SourceHandles function should only be used for debugging purposes.

3.5.2.2 General Source / Sink Information

A function block containing a source or sink provides the following function:

• SyncDataInfo
Function SyncDataInfo can be used to get information of how many connections the function
block may serve as source (SourceCount) or as sink (SinkCount). Sources and sinks are
numbered in ascending order starting from 1. There can be no gaps between different
source/sink numbers. A request is sent:

Controller -> Slave: FBlockID.InstID.SyncDataInfo.Get

Specification Document  Copyright 1999 - 2005 MOST Cooperation
Page 180

MOST®
Specification

MOST Specification 05/2005

 The answer contains the number of sources/sinks in this function block:

Controller -> Slave: FBlockID.InstID.SyncDataInfo.Status (SourceCount,
SinkCount)

Lists of synchronous channels must always be in ascending order. If not, then error code 0x06 will be
returned.

3.5.2.2.1 Synchronous Source

There are two approaches of connecting a source to the network, SourceConnect and Allocate.
SourceConnect uses the Connection Manager to reserve resources, which thereby have total control
of resource usage. Allocate is a more decentralized approach with less control of resource usage. The
Connection Manager must only use one approach per function block. But devices may support both
methods.

A synchronous source provides the following functions to the network:

• SourceInfo
Property SourceInfo contains detailed information about the kind of synchronous source data
that the source can handle. The source information is specific for each source number. On a
request with the SourceNr:

Controller -> Slave: FBlockID.InstID.SourceInfo.Get (SourceNr)

 The following is received:

Slave -> Controller: FBlockID.InstID.SourceInfo.Status (SourceNr, DataType,

 [DataDescription])

The parameter DataType describes the kind of synchronous data stream that is sent by the
source. Depending on DataType, a DataDescription may follow. Information about data types
can be found in Appendix B: Synchronous Data Types.

• SourceName
Property SourceName holds the name of the synchronous source.
It is requested with the SourceNr as parameter:

 Controller -> Slave: FBlockID.InstID.SourceName.Get (SourceNr)

The answer is a string containing the name:

 Slave -> Controller: FBlockID.InstID.SourceName.Status (SourceNr, SourceName)

Specification Document  Copyright 1999 - 2005 MOST Cooperation

 Page 181

MOST®
Specification

MOST Specification 05/2005

• SourceActivity

Some synchronous source applications require either to start or to stop transmission of stream
data controlled by superior layers. In general, there are specific functions that need to be
called for performing the starting or stopping. It is easier for the controller if this specific
information is not needed. Therefore, for every synchronous source data stream, the abstract
method SourceActivity is defined:

Controller -> Slave: FBlockID.InstID.SourceActivity.StartResult (SourceNr,

 Activity)

Through parameter Activity = [On/Off/Pause], synchronous data transfer can be started,
stopped, or paused. After completion of the respective action, the following reply will be
generated:

 Slave -> Controller: FBlockID.InstID.SourceActivity.Result (SourceNr,

 Activity)

1. SourceConnect Approach
• SourceConnect

A Controller can use method SourceConnect to connect a source to already reserved
channels. These channels are administrated by the Connection Manager. The
Connection Manager sends:

 Controller -> Slave: FBlockID.InstID.SourceConnect.StartResult
 (SourceNr, ChannelList)

Upon successful execution of the method, the following is reported:

Slave -> Controller: FBlockID.InstID.SourceConnect.Result (SourceNr,

 SrcDelay)
• SourceDisConnect

SourceDisConnect is used to disconnect a source from the channels it occupied.
Usage of this method does not deallocate the channels that were used. These
channels are administrated by the Connection Manager.

 Controller -> Slave: FBlockID.InstID.SourceDisConnect.StartResult

 (SourceNr)

After the method has finished, the following is reported:

Slave -> Controller: FBlockID.InstID.SourceDisConnect.Result
 (SourceNr)

2. Allocate Approach
• Allocate

To make the source first allocate channels and then connect to them, method Allocate
is used.

 Controller -> Slave: FBlockID.InstID.Allocate.StartResult (SourceNr)

On success, the channels the source now occupies and the relative delay to the timing
master is reported:

 Slave -> Controller: FBlockID.InstID.Allocate.Result (SourceNr,

 SrcDelay, Channels)

Specification Document  Copyright 1999 - 2005 MOST Cooperation
Page 182

MOST®
Specification

MOST Specification 05/2005

If the allocation was not successful due to a lack of enough free channels, an error is
generated with the error code “Function specific” and as Error Info the SourceNr and
the number of required channels. An allocation must never be done partially. Unless
all channels can be allocated, no allocation is done. The resulting error will be:

 Slave -> Controller: FBlockID.InstID.Allocate.Error

(“Function Specific”, SourceNr, RequiredChannels)
• DeAllocate

DeAllocate is used by a controller wishing to cancel that which was done by Allocate
before. This means that the allocated channels will be deallocated and that the source
no longer is connected to them.

 Controller -> Slave: FBlockID.InstID.DeAllocate.StartResult (SourceNr)

On success, the channels are no longer occupied and the source is disconnected from
the channels.

 Slave -> Controller: FBlockID.InstID.DeAllocate.Result (SourceNr)

3.5.2.2.2 Synchronous Sink

A function block that is used as a sink for synchronous data supports functions similar to those for a
source. Error handling is also done in an analogous way.

A synchronous sink provides the following functions to the network:

• SinkInfo
Property SinkInfo contains detailed information about the kind of synchronous sink data that
the sink can handle. The sink information is specific for each sink number. On a request with
the SinkNr:

Controller -> Slave: FBlockID.InstID.SinkInfo.Get (SinkNr)

 The following is received:

Slave -> Controller: FBlockID.InstID.SinkInfo.Status (SinkNr, DataType,
 [DataDescription])

The parameter DataType describes the kind of synchronous data stream that may be received
by the sink. Depending on DataType, a DataDescription may follow. Information about data
types can be found in Appendix B: Synchronous Data Types.

• SinkName

Property SinkName holds the name of the synchronous sink.
It is requested with the SinkNr as parameter:

 Controller -> Slave: FBlockID.InstID.SinkName.Get (SinkNr)

The answer is a string containing the name:

 Slave -> Controller: FBlockID.InstID.SinkName.Status (SinkNr, SinkName)

• Connect
A controller uses Connect to connect the sink to specified channels.

Controller -> Slave: FBlockID.InstID.Connect.StartResult (SinkNr, SrcDelay,

 Channels)

Specification Document  Copyright 1999 - 2005 MOST Cooperation

 Page 183

MOST®
Specification

MOST Specification 05/2005

SrcDelay is the relative delay to the timing master. It is used to provide the possibility of delay
compensation. The sink returns as result:

Slave -> Controller: FBlockID.InstID.Connect.Result (SinkNr)

• DisConnect
Method DisConnect is used to disconnect a sink from channels it is currently using.

Controller -> Slave: FBlockID.InstID.DisConnect.StartResult (SinkNr)

After the method has finished, the following is reported:

Slave -> Controller: FBlockID.InstID.DisConnect.Result (SinkNr)

• Mute
The output of synchronous data from a sink can stopped by method Mute.

Controller -> Slave: FBlockID.InstID.Mute.SetGet (SinkNr, Status)

Status is On or Off to turn mute on or off.

3.5.2.2.3 Handling of Double Commands

Normally a repeated synchronous control command (this means: allocate / deallocate / connect /
Disconnect / SourceConnect / SourceDisConnect) should not appear. This handling should be done
by the Connection Manager. But in an error case the behavior of the device is defined in the following
way:

• Source methods
1. SourceConnect Utilization

• SourceConnect
If there is a SourceConnect.StartResult command with a source number of a currently
connected source and the ChannelList contains the same channels that it is
connected to, a normal result message will be sent. If an already connected source is
to be connected to different channels the device will first disconnect the old
connection and then make the new one. Following this it sends out a result message.

• SourceDisConnect
If there is a SourceDisConnect.StartResult command, with a source number of a
currently not connected source, a normal result message with the disconnected
source number is sent back to the caller.

2. Allocate Utilization
• Allocate

If there is an Allocate.StartResult command with a source number of a currently
allocated source, a normal result message with the already allocated channels is sent
back to the caller.

• DeAllocate
If there is a DeAllocate.StartResult command with a source number of a currently not
allocated source, a normal result message with the source number is sent back to the
caller.

Specification Document  Copyright 1999 - 2005 MOST Cooperation
Page 184

MOST®
Specification

MOST Specification 05/2005

• Sink methods

• Connect
If there is a Connect.StartResult command with a sink number of a currently connected
sink and the same channels that it is connected to, a normal result message will be sent. If
an already connected sink is to be connected to different channels the device will first
disconnect the old connection and then make the new one. Following this it sends out a
result message. If a new value of SrcDelay is passed to the sink, this must be used
instead of the old one.

• DisConnect
If there is a DisConnect.StartResult command with a sink number of a currently not
connected sink, a normal result message with the disconnected sink number is sent back
to the caller.

3.5.2.3 Compensating Network Delay

Every active node in the ring (source data bypass inactive) generates 2 samples delay for the source
data (caused by internal processing). Especially in top HIFI applications, this is an unpleasant effect.
The MOST system therefore provides mechanisms that allow compensation for this delay. Every
MOST Network Interface Controller is provided with the information about the general delay of the
entire system ∆TNetwork, and the delay up to its own node ∆TNode with respect to the Timing Master. In
addition to that, the delay of the active source device ∆TSource must be made available by control
messages.

Based on that information, the delay ∆Tcomp, which must be compensated for, can be calculated with
the help of the formula below:

∆Tcomp = ∆TNode – ∆TSource - 2[Samples] for ∆TSource < ∆TNode
∆Tcomp = ∆TNetwork - ∆TSource + ∆TNode – 2 [Samples] for ∆TSource > ∆TNode

(∆Txxx ≡ Contents of the respective register in the chip * 2 Samples Delay)

Specification Document  Copyright 1999 - 2005 MOST Cooperation

 Page 185

MOST®
Specification

MOST Specification 05/2005

3.6 Handling Asynchronous (Packet) Data

3.6.1 Direct Access to the MOST Network Interface Controller

A data packet that can be sent in the asynchronous area consists of 48 Bytes of data and a 16-bit
receiver address (logical node address only):

 Data area MOST Network Interface Controller = 48 Byte

16 Bit

Rx/TxLog

The data field is significantly longer than that of the control channel. Unlike the control channel, no
ACK/NAK mechanism or low level retries are implemented, since they are not necessary for most of
the applications. Nevertheless, the telegram is checked. A transport protection must be implemented
on a higher level.

3.6.1.1 Priorities

In every node (MOST Network Interface Controller) the priority for packet data transfer can be
assigned (range 0x01, …, 0x0F with value 0x07 = lowest priority).

Specification Document  Copyright 1999 - 2005 MOST Cooperation
Page 186

MOST®
Specification

MOST Specification 05/2005

3.6.2 MOST Network Service

The Network Service have a mechanism, called the Asynchronous Data Transmission Service, by
which the data packets described above can be sent and received. It handles the respective registers
in the MOST Network Interface Controller.

3.6.2.1 Securing Data

For stream data of high bandwidth, e.g., graphical applications, it is not useful to implement
mechanisms for secure data transmission. On one hand the data security (bit error rate) of MOST is
approximately 10-12, on the other hand, every securing mechanism must be checked by a µController,
which becomes more and more difficult, as the bandwidth is increased. In case of errors,
transmissions would be repeated. This would cause delays that may be unwanted. It must be decided
for each application, whether mechanisms for secure data transmission would be useful, and if so,
which implementation to use.

For certain applications, which transmit in the asynchronous area at a lower bandwidth, it may be
useful to implement securing mechanisms. The telegram structure, quite alike that of the control
channel could be used by setting TelID to 4 bits and TelLen to 12 bits.

 Data Area MOST Network Interface Controller = 48 Byte (Data Link Layer 48 Bytes Mode)

16 Bit 8 Bit 8 Bit 12 Bit 4 Bit 4 Bit 12 Bit 8 Bit 8 Bit 8 Bit

DeviceID

FBlock
ID

Inst.
ID

Fkt
ID

OP
Type

Tel
ID

Tel
Len

Data 0 Data 1 ... Data 41

 Data Area MOST Network Interface Controller = 1014 Byte (Alternative Data Link Layer)

16 Bit 8 Bit 8 Bit 12 Bit 4 Bit 4 Bit 12 Bit 8 Bit 8 Bit 8 Bit

DeviceID

FBlock
ID

Inst.
ID

Fkt
ID

OP
Type

Tel
ID

Tel
Len

Data 0 Data 1 ... Data 1007

TelID: Identification of kind of telegram

Meaning TelID

MOST High Protocol
User data

8

MOST High Protocol
Control data

9

Reserved for
MAMAC PacketsEthernet frames

A, B

TelLen: = up to 1008 (42)

 Specifies the length of the data field, i.e., the number of Bytes after TelLen

Data X: Data Bytes

Specification Document  Copyright 1999 - 2005 MOST Cooperation

 Page 187

MOST®
Specification

MOST Specification 05/2005

For securing data, MOST High Protocol is used here.

Control
Channel

Message Transfer
(Single + Segmented)

Control
Channel

MOST
High

Protocol

Control Message Service

Sync
Channel

Allocation
Service

Network Service

Async Data Transmission
Service

Async.
Channel

MOST
High

Protocol

Figure 3-24: Network Service: Services for the asynchronous channel

Specification Document  Copyright 1999 - 2005 MOST Cooperation
Page 188

MOST®
Specification

MOST Specification 05/2005

3.6.3 MOST Asynchronous Medium Access Control (MAMAC)

To be able to run commonly used network protocols like TCP/IP (including IPX, NetBEUI and ARP)
through the Asynchronous (Packet Data) channel of MOST, MOST Asynchronous Medium Access
Control (MAMAC) was defined. MAMAC can be used simultaneously with the Most High Protocol.

Specification Document  Copyright 1999 - 2005 MOST Cooperation

 Page 189

MOST®
Specification

MOST Specification 05/2005

3.7 Controlling Synchronous / Asynchronous Bandwidth
When administrating the boundary between synchronous and asynchronous data area, two contrary
requirements must be taken into consideration. On one hand, there should be as much bandwidth as
possible for asynchronous data transfer, so it is not reserved for unused synchronous channels. On
the other hand, the boundary should be changed only in rare cases, since all synchronous
connections must be re-allocated after the boundary was changed.

Even with the most adverse usage of a fully equipped vehicle, the entire available bandwidth for
synchronous transfer is seldom used. Generally, less bandwidth is required for synchronous transfer.

System initialization adjusts the boundary to the center of the bandwidth. During runtime it is shifted
only “to the right”, that is, in the direction of an extension of the synchronous area, up to a limit, which
will reserve, e.g., one quadlet for asynchronous data transfer. There is no shifting to the left. The
boundary is returned to its default value only after a re-initialization of the system.

The changing of the boundary between synchronous and asynchronous area is done physically by the
Timing Master, located in the system Master device.

Specification Document  Copyright 1999 - 2005 MOST Cooperation
Page 190

MOST®
Specification

MOST Specification 05/2005

3.8 Connections

3.8.1 Synchronous Connections

3.8.1.1 ConnectionMaster

Synchronous connections are managed by a Connection Manager. All requests for establishing
connections must be directed to this Connection Manager. It could be implemented in any device.
The Connection Manager shall supply functions defined in FBlock ConnectionMaster (0x03).

For building a point-to-point connection, FBlock ConnectionMaster provides a method
BuildSyncConnection:

Controller -> CManager: ConnectionMaster.1.BuildSyncConnection.StartResultAck
 (SenderHandle, Source, Sink)

Source in the method above refers to any source:
Source = FBlockID.InstID.SourceNr.
Sink refers to any sink:
Sink = FBlockID.InstID.SinkNr.
CManager is the DeviceID of the Connection Manager.

After a successful connection is built, the ConnectionMaster returns:

CManager -> Controller: ConnectionMaster.1.BuildSyncConnection.ResultAck
 (SenderHandle, Source, Sink)

Error handling:

If the connection fails, the ConnectionMaster answers with OPType “ErrorAck” (0x9) and the
ErrorCode “ProcessingError” (0x42), and returns the parameters Source and Sink:

CManager -> Controller: ConnectionMaster.1.BuildSyncConnection.ErrorAck
 (SenderHandle,”ProcessingError”, Source, Sink)

Removing a connection is done in an analogous way, by using the method RemoveSyncConnection.

The ConnectionMaster generates an array of all existing connections including sources and sinks,
where it adds more information. This array is accessible in function SyncConnectionTable:

Controller -> CManager: ConnectionMaster.1.SyncConnectionTable.Get

CManager -> Controller: ConnectionMaster.1.SyncConnectionTable.Status
 (Source, Sink, SrcDelay, NoChannels, ChannelList,
 Source, Sink, SrcDelay, NoChannels, ChannelList
 Source, Sink, SrcDelay, NoChannels, ChannelList, ...)

Specification Document  Copyright 1999 - 2005 MOST Cooperation

 Page 191

MOST®
Specification

MOST Specification 05/2005

The parameters are the same as those described above. SyncConnectionTable cannot be set
directly. Building and removing connections is done only with methods BuildSyncConnection and
RemoveSyncConnection.

After switching off the network, the contents of SyncConnectionTable are deleted, leaving no
synchronous connections in the system. They must be rebuilt by new requests of the initiator(s).

The SyncConnectionTable is deleted also when Configuration.Status(NotOK) is received by the
Connection Manager since all connections are removed in this case. See section 3.3.2 for more
information.

Table 3-15: Functions in ConnectionMaster in conjunction with the administration of synchronous connections

Deadlock prevention:

In order to prevent potential deadlocks in the connection building process, tCM_DeadlockPrev is used.
tCM_DeadlockPrev is started as the Connection Manager makes a request to a source/sink Function Block.
If the timer expires the action will be regarded as failed.

This timer should not be used as a maximum time for the source/sink to carry out their respective
operations since this must be done much faster; it is merely used to prevent deadlocks and should
only be effective in the special cases where a source/sink device has malfunctioned after receiving the
command from the Connection Manager.

FUNCTIONS
FktID OPType Sender Receiver Explanation
BuildSyncConnection StartResultAck Controller Connection

Manager
Request for building connection

 ResultAck Connection
Manager

Controller Answer with result

SyncConnectionTable Get Controller Connection
Manager

Request of that property, where the
Connection Manager stores all active point-to-
point connections

 Status Connection
Manager

Controller Answer

RemoveSyncConnection StartResultAck Controller Connection
Manager

Request for removing connection

 ResultAck Connection
Manager

Controller Answer with result

Specification Document  Copyright 1999 - 2005 MOST Cooperation
Page 192

MOST®
Specification

MOST Specification 05/2005

3.8.1.2 Establishing Synchronous Connections

When building a synchronous connection, the Connection Manager uses method Allocate or
SourceConnect in the Source FBlock to connect it to the network. After a positive answer from the
source, the Connection Manager uses the method Connect in the Sink FBlock to connect it to the
same channels as used by the source. This mechanism is explained in the following figure, and the
text below.

Initiator

Connection
Manager

Source
Device

Sink
 Device

1

2
4

5
7

8

3 6

Figure 3-25: Building a synchronous connection step by step

Explanation of Figure 3-25:

1) Method BuildSyncConnection is started by an initiator, for building a connection between a source

and a sink. If the source uses the method SourceConnect to connect to the network, the
Connection Manager is responsible for the channels being unoccupied. If the method Allocate is
used by the source the source must allocate its own channels.

2) Connection Manager sends a command to the source device to connect its synchronous output to

network channels. The source must support at least one of the methods Source Connect or
Allocate.

3) The Source handles the request differently depending on if it uses method Allocate or

SourceConnect

a) Allocate:
The source tries to allocate channels. The following results are possible:

• Enough free channels. Reply to Connection Manager (4) as Allocate.Result with
parameters SourceNr, SrcDelay and Channels.

• Timing Master is busy on processing other allocation/deallocation requests. Retries may
be tried until tCM_DeadlockPrev has expired, at which time Allocate is regarded as failed by the
Connection Manager. The rate at which the Timing Master can be asked is regulated by
tResourceRetry.

Specification Document  Copyright 1999 - 2005 MOST Cooperation

 Page 193

MOST®
Specification

MOST Specification 05/2005

• Not enough channels. Reply to ConnectionMaster (4) as Allocate.Error with parameters
SourceNr and RequiredChannels.

b) SourceConnect:
A SourceConnect node does not need to allocate channels. It connects to the ones supplied
by the Connection Manager when invoking the SourceConnect method. The result is sent
back to the Connection Manager (4).

4) The Result is sent to the Connection Manager.

5) If the result is ok, the Connection Manager starts method Connect of the sink, communicating
parameters Channels and SrcDelay. The sink has then all the information needed of the source.

6) The Sink connects to the channels.

7) The result is sent to the Connection Manager as Connect.Result.

8) The ConnectionMaster reports the result of establishing the connection to the initiator by using
BuildSyncConnection.ResultAck. If the building of the connection was successful, the
ConnectionMaster internally stores the connection data. This way, if another sink is connected to
this source, only the allocation data needs to be sent to the new sink.
In case of a failure, BuildSyncConnection.ErrorAck is sent and all changes to the network is
unmade. That means that if an error occurred in the Connect process, the source is disconnected
and the channels are freed again.

Specification Document  Copyright 1999 - 2005 MOST Cooperation
Page 194

MOST®
Specification

MOST Specification 05/2005

3.8.1.3 Removing Synchronous Connections

The initiator terminates a connection previously built by the Connection Manager. The Connection
Manager commands the sink to disconnect from the channels, which it is currently using.
After a positive answer, and if the channels are not in use by another sink, the Connection Manager
disconnects the source from its channels. Depending on whether the source uses SourceConnect or
Allocate to connect to the network, the Connection Manager uses method SourceDisConnect or
Deallocate.
After that, the Connection Manger reports the result of the termination to the initiator.

Initiator

Connection
Manager

Source
Device

Sink
 Device

1

5
7

2
4

8

6 3

Figure 3-26: Step by step removal of a synchronous connection

Explanation of Figure 3-26:

1) Method RemoveSyncConnection is started by an initiator, for removing a connection between a
source and a sink.

2) The Connection Manager starts method DisConnect in the sink FBlock, this makes the sink
disconnect from the previously used channels.

3) The sink disconnects from the used channels.

4) The sink reports the result to the Connection Manager by DisConnect.Result.

5) If no other sink uses the channels in the connection, the channels will be freed. Otherwise
continue at 8. Freeing the channels is handled differently depending on if the source uses
Allocate or SourceConnect. The respective method for releasing the channels is called by the
Connection Manager.

Specification Document  Copyright 1999 - 2005 MOST Cooperation

 Page 195

MOST®
Specification

MOST Specification 05/2005

6) The source disconnects or deallocates and disconnects upon reception of SourceDisConnect
or DeAllocate.

a) DeAllocate:

The source has to deallocate the used channels. Upon trying to do this, the following results
are possible:

• Successful de-allocation. Positive answer by DeAllocate.Result (7).

• The Timing Master is busy handling other allocation/ de-allocation requests. Retries may
be tried until tCM_DeadlockPrev has expired, at which time DeAllocate is regarded as failed by
the Connection Manager. The rate at which the Timing Master can be asked is regulated
by tResourceRetry.

b) SourceDisConnect:
A SourceConnect node does not need to deallocate channels. The connection manager is
responsible for handling the channels. The source node disconnects from the channels and
reports the result to the connection manager (7).

7) The result is sent to the Connection Manager as SourceDisConnect.Result or
DeAllocate.Result depending on the method used.

8) If the Connection Manager has received a positive answer from the source, the connection is
removed from its internal connection table. The Connection Manager sends an answer,
RemoveSyncConnection.ResultAck, to the Initiator. The message contains the status of the
requested termination of the connection.

3.8.1.4 Supervising Synchronous Connections

Every synchronous sink is responsible of supervising the validity of its output. If a source malfunctions
and the data on the channels is rendered invalid the sink has to secure its synchronous output signals.

3.8.1.4.1 Enabling Synchronous Output

A sink that cannot detect the validity of the data on the channels has to verify if a device is currently
putting out data. A sink application must use RemoteGetSource if it cannot make sure that it receives
valid data by other mechanisms

3.8.1.4.2 Source Drops

A source that malfunctions might drop from the network, thus generating a Network Change Event.
When this is detected by a sink it has to verify that a source is still connected to the channels and if
not secure its synchronous output. Sinks with automatic noise detection do not need to use this
method.

Another approach may be used if part of the device is still operational. The source device must then
route zeros (signal mute) to the channels of the malfunctioning FBlock for a time tCleanChannels. In this
way it will be as if the sink muted its output. After time tCleanChannels the source must be disconnected
from the network. Then the device must send out an FblockIDs.Status without the malfunctioning
source FblockID. This informs the network that the source FBlock is no longer available.

Specification Document  Copyright 1999 - 2005 MOST Cooperation
Page 196

MOST®
Specification

MOST Specification 05/2005

3.9 Timing Definitions
T = Timer. If expired, the implementation has to invoke an error handling as defined in the

respective section of the specification.
C = Timing constraint. The implementation has to fulfill this timing requirement in order to

be compliant to this specification.
Name Min Value Typ Value Max Value Unit Type Definition
Initialization
tConfig 1975 2000 2015 ms T Time that may pass after

initialization of the MOST
Network Interface Controller in
a master or a slave device until
a stable lock has been
achieved at least once and the
boundary is set to a value > 5
(i.e., the TimingMaster
generated a Net On event)

tWakeUp – 6 25 ms C Maximum time between start of
activity at the Rx input of the
device and start of activity at
the device’s Tx output.
(63 • tWakeUp) + tWaitNodes + tLock +
tBoundary < tConfig

tWaitNodes – – 100 ms C Time that may pass between
start of activity at the Rx input
of a device and the deactivation
of its all-bypass. This timer is
valid only when starting up the
network.

tBoundary – – 20 ms C Time after which a change of
the boundary must be detected
while waiting for the Net On
event.

tWaitBeforeScan 100 100 500 ms T Time between broadcast of
Configuration.Status(NotOk) or
NetOn and start of a new scan
by the NetworkMaster.
tWaitBeforeScan < tWaitAfterNCE

tDelayCfgRequest1 500 500 550 ms T Time after which the
NetworkMaster starts to query
nodes again that did not answer
within tWaitForAnswer.
This time is used for the first 20
attempts after the Net On
event.

tDelayCfgRequest2 10 10 11 s T Same as tDelayCfgRequest1, but from
the 21st attempt on.

Specification Document  Copyright 1999 - 2005 MOST Cooperation

 Page 197

MOST®
Specification

MOST Specification 05/2005

Shutdown
tShutDown – – 15 ms C Time between a shutdown

event (i.e. stop of activity at the
device’s Rx input during normal
operation or ring break
diagnostics mode or start of
activity at the input when in
slave wakeup mode) and the
stop of activity at the device’s
Tx output.

tSuspend 1975 2000 2100 ms T Time the PowerMaster waits for
a ShutDown.Result(Suspend)
message after broadcast of
ShutDown.Start(Query).

tShutDownWait 1 2 15 s T Time the PowerMaster waits
between broadcasting
ShutDown.Start(Execute) and
switching off the Tx output.

tRetryShutDown 9.9 10 10.1 s T Time the PowerMaster waits
between
ShutDown.Start(Query)
broadcasts.

tRestart 275 300 350 ms T Time after switching off the Tx
output until the device is ready
to switch on the Tx output
again. Note: This timing applies
to networks with up to 19
nodes. For networks with more
nodes, the following formulae
applies:
1. tRestartMin = (Number of

nodes) • tShutDown – 10ms
2. tRestartMax = (Number of

nodes) • tShutDown + 65ms
3. tRestartMin ≤ tRestartTyp ≤

tRestartMax
tPwrSwitchOffDelay 5 5 device

specific
s T Time between switching off the

Tx output and changing to state
DevicePowerOff

tSlaveShutdown 16 – – s T Time a slave device shall wait
after ShutDown.Start(Execute)
before it may switch off light
without detection of no light at
the input.

Specification Document  Copyright 1999 - 2005 MOST Cooperation
Page 198

MOST®
Specification

MOST Specification 05/2005

General
tLock 75 100 115 ms T Time during which no lock

errors must occur, before the
lock is declared “stable”. Note:
While a ring break diagnosis is
pending, tDiag_Lock has to be
used instead.

tUnlock 60 70 100 ms T Accumulated time of unlocks
that lead to the detection of a
critical unlock.

tMPRdelay – – 200 ms C Time between a network
change event (NCE) and the
notification of applications for
which NCEs are relevant.1
tMPRdelay ≥ tLock

tWaitAfterNCE 200 200 500 ms T Time between a NCE and the
start of the network re-scan by
the NetworkMaster.
tMPRdelay ≤ tWaitAfterNCE ≤
tDelayCfgRequest1

tBypass 50 70 100 ms T Time the all-bypass of a device
must stay active after being
activated. This timer is not valid
when starting up the network. It
applies only when a node drops
out of the network.
tBypass ≤ tWaitNodes

tAnswer – – 50 ms C Time during which a network
slave must respond to a query
by the NetworkMaster.

tWaitForAnswer 100 200 500 ms T Time a NetworkMaster waits for
an answer from a queried
slave.
tWaitForAnswer ≤ tDelayCfgRequest1

tResourceRetry – – 10 ms C Time between attempts of
allocating or deallocating
synchronous resources

tProperty – – 200 ms C Time between complete
reception of a query to a
property and the start of the
response message.

tWaitForProperty 250 300 350 ms T Time a shadow waits for the
reception of a query to a
property.

tProcessingDefault1 – 100 150 ms T Time a device waits before
sending the first Processing
message.

tProcessingDefault2 100 100 – ms T Time a device waits between
sending subsequent Processing
messages.

1 Devices containing such applications must only be used in node positions where this requirement
can be fulfilled.

Specification Document  Copyright 1999 - 2005 MOST Cooperation

 Page 199

MOST®
Specification

MOST Specification 05/2005

tWaitForProcessing

1

200 200 250 ms T Time a Shadow waits for the
reception of the first Processing
message, if not specified
otherwise for the respective
message in the FBlock
Specification.

tWaitForProcessing

2
200 200 - ms T Time a Shadow waits for the

reception of the following
Processing messages. The
timer should be set to 100 ms
more than tProcessingDefault2.

tCleanChannels 3.5 5 25 ms T Time during which a source
must route zeroes onto
synchronous channels before it
stops using them.

tCM_DeadlockPrev - - 1000 ms T Timer to prevent deadlocks in
the connection building
process.

Ring Break Diagnosis

Note: The following definitions represent the range within system integrators can choose the timings
for a specific system. Tolerances that are applied to these values for nodes of the same system are:
+15ms, -25ms.
tDiag_Light 0 0 100 ms T Time a node waits for activity at

its Rx input before switching to
ring break master mode.

tDiag_Master 2 28 58 s T Time a node stays in ring break
master mode before generating
the result of the diagnosis.

tDiag_Slave 4 30 60 s T Time a node stays in ring break
slave mode before generating
the result of the diagnosis. In
addition,
tDiag_Slave ≥ tDiag_Master + 2s must
be true.

tDiag_Lock 250 250 260 ms T Same as tLock, but valid during
ring break diagnosis.

tDiag_Start 0 0 10 s C If using SwithToPower to trigger
ring break diagnosis, the
diagnosis has to be started
within tDiag_Start.

tDiag_Restart 0 0 10 s T This is the time a device has to
wait after an unsuccessful
diagnosis (ring broken) until it
can be restarted by network
activity.
The value of this timer should
be greater or equal to the
maximum difference between
the startup of ring break
diagnosis in different devices.
If this time is unknown, the
maximum value can be used.

Table 3-16: Timing Definitions

Specification Document  Copyright 1999 - 2005 MOST Cooperation
Page 200

MOST®
Specification

MOST Specification 05/2005

3.10 Secondary Node
For some applications it can be useful to integrate two MOST Network Interface Controllers into one
device. This section describes, which scenarios are available, and how the tasks are divided up
between the two MOST Network Interface Controllers.

Please note:
The Secondary Node approach applies for Timing Slave nodes only.

When using secondary nodes, both MOST Network Interface Controllers are controlled by the same
microcontroller. That node, where Control Messaging is handled (and where the Network Service are
running mainly) is called “Primary Node”. There are three scenarios:

• Scenario 1:
Primary node : Ctrl + Packet
Secondary node : Stream

• Scenario 2:
Secondary node : Stream
Primary node : Ctrl + Packet

• Scenario 3:
Primary node : Ctrl + Stream
Secondary node : Packet

All timing constraints, which apply for “normal” MOST nodes must be fulfilled by secondary nodes too.
The address of the secondary node should be determined and initialized too.

3.10.1 Scenario 1

Primary
Node

Secondary
Node

Ctrl + Packet Stream

Micro
Controller

Rx RxTx Tx

Pos = n Pos = n + 1

MOST Device

Rx

FOT FOT

Tx

Primary Node Secondary Node
- SP Parallel Async., CP Serial - SP Serial, CP Serial
- SP Parallel Async., CP Parallel - SP Parallel Sync., CP Serial
 - SP Parallel Sync., CP Parallel

Figure 3-27: Secondary Node, scenario 1

Specification Document  Copyright 1999 - 2005 MOST Cooperation

 Page 201

MOST®
Specification

MOST Specification 05/2005

In Scenario 1, the node position (Pos) of the primary node is always less than the node position of the
secondary node. Figure 3-27 shows, which configurations for Source Data Port (SP) and Control Port
(CP) are available.

3.10.2 Scenario 2

Secondary
Node

Primary
Node

Ctrl + PacketStream

Micro
Controller

Rx RxTx Tx

Pos = n Pos = n + 1

MOST Device

Rx

FOT FOT

Tx

Secondary Node Primary Node
- SP Serial, CP Serial - SP Parallel Async., CP Serial
- SP Parallel Sync., CP Serial - SP Parallel Async., CP Parallel
- SP Parallel Sync., CP Parallel

Figure 3-28: Secondary Node, scenario 2

In Scenario 2, the node position (Pos) of the secondary node is always less than the node position of
the primary node, except for the primary node being the system’s Timing Master. Figure 3-28 shows,
which configurations for Source Data Port (SP) and Control Port (CP) are available.

Specification Document  Copyright 1999 - 2005 MOST Cooperation
Page 202

MOST®
Specification

MOST Specification 05/2005

3.10.3 Scenario 3

Primary
Node

Secondary
Node

Ctrl + Stream Packet

Micro
Controller

Rx RxTx Tx

Pos = n Pos = n + 1

MOST Device

Rx

FOT FOT

Tx

Primary Node Secondary Node
- SP Parallel Sync., CP Serial - SP Parallel Async., CP Serial
- SP Parallel Sync., CP Parallel - SP Parallel Async., CP Parallel

Figure 3-29: Secondary Node, scenario 3

In Scenario 3, the node position (Pos) of the primary node is always less than the node position of the
secondary node. Figure 3-29 shows, which configurations for Source Data Port (SP) and Control Port
(CP) are available.

Specification Document  Copyright 1999 - 2005 MOST Cooperation

 Page 203

MOST®
Specification

MOST Specification 05/2005

4 Hardware Section

4.1 Basic HW Concept
The fundamental hardware structure of a MOST device is displayed in the block diagram below.
There are blocks that are not mandatory, since, e.g., a simple MOST device does not always need a
micro controller (active speaker). Areas that are not mandatory are displayed in gray. A MOST device
consists of:

• Optical interface area

• MOST function area

• µC area

• Application area

• Power supply area

A MOST network is awakened optically. All MOST devices are connected to a continuous power
supply. They activate a sleep mode if required. If a device is in sleep mode, the power consumption
should be reduced as far as possible (current < 100 µA). For this reason, unused areas must be
separated from the power supply. Only the sections that are absolutely necessary will stay powered.
It must be taken into consideration that no parasitic currents will flow via signal lines between inactive
and active sections.

The individual areas are explained below.

Power Supply Area

Optical
Interface

Area

MOST
Function

Area

uController
Area

Application
Area

Reset WDTrig Hold

RX

TX

Continuous
power (+)

Ground

Status SwitchToPower

U App

5V Dig

5V Cont

U<9V
U>16V

5V Dig
5V Dig /
5V Cont U App

Control Control

SourceDat
a

5V Cont 5V Dig

SA

uCReset

OptPwrSwitch

Figure 4-1: Example of the structure of a MOST device, the different functional areas and their interfaces

Specification Document  Copyright 1999 - 2005 MOST Cooperation
Page 204

MOST®
Specification

MOST Specification 05/2005

4.2 Optical Interface Area

4.2.1 Overview

The optical interface area consists of an optical receiver and an optical transmitter. Both communicate
with the MOST Network Interface Controller via a single data line (RX and TX). The receiver is
connected to continuous power, unlike the transmitter.

Figure 4-2: Optical interface area

The receiver contains an ActivityDetection logic that is supplied with continuous power via the micro
power regulator (5V cont.), and that consumes less than 20µA. As soon as the ActivityDetection logic
recognizes modulated light, signal status is switched to low, and the received data stream is switched
to the output.

Signal Status is connected to the power supply area, and therefore the power to the MOST Network
Interface Controller, and eventually to other areas, is switched on.

If no light is received, the receiver is switched off, except for the wake-up logic. Signal Status is high
then.

I_IN

8: RX_DATA

7: STATUS

6: GND

5: Vcc

Amplification/Data
Slicing/Pulse Width
Correction

Activity
Detection

+5Vcont.

RX

100µH

MOST BigfootTx

1: TX_DATA

2: GND

3: Vcc

100N 10µ

5V Dig

TX

100N 10µ

4: Control
30K*

Short connection to FOT

Short connection to FOT

30K*

OptPwrSwitch
0: normal Power
1: -3dB

*: TBD

150R close to OS8104

 STATUS

Optical Interface Area

150R close to Receiver

S1

MOST BigfootRx

Specification Document  Copyright 1999 - 2005 MOST Cooperation

 Page 205

MOST®
Specification

MOST Specification 05/2005

It is possible to influence the driver current of the transmitter by a resistor between 5Vdig and input
Control. A second resistor that has the same value can be connected in parallel to the first resistor by
using switch 1. When doing that, the optical output power is increased by approx. 3dB. Switch 1 is
controlled by signal OptPwrSwitch, which is driven by the µC area. The µC only activates
OptPwrSwitch, if it has received the respective KWP2000 command. After tOptPwrLow, the µC has to
deactivate OptPwrSwitch independently.

In normal operation mode the switch is closed, so the transmitter runs at maximum optical power
output.

This circuit provides diagnosis. If the optical power between two devices is reduced by 3dB and the
system still works correctly, it can be assumed that there is a reserve of at minimum 3dB with respect
to the optical power budget.

Please note:
By an appropriate arrangement (e.g., Pull down resistor, or inverter connected to
OptPwrSwitch) it must be made sure, that S1 is closed in case of an inactive µC.

For the lock behavior in a MOST network there are two important influencing variables:

• Optical Power Budget

• Phase jitter

In opposite to the power budget, the phase jitter may be accumulated when passing several nodes.
An important influence variable for the phase jitter is the design of the optical interface area. Here
interference’s on highly resistive data wiring and crosstalk may occur.

For avoiding that, in the data lines to and from the MOST Network Interface Controller a resistor of 100
Ohms up to 150 Ohms must be inserted. The resistors must be placed as close to the feeding output
as possible. In addition to that, optical receiver and transmitter must be placed closely to the MOST
Network Interface Controller. The maximum length of data lines to Rx and from Tx must be less than
1.5 cm.

Another important factor is the layout of the PCB. Below all data lines, transmitter and receiver a HF
ground plane should be placed. Ideally, Rx and TX line are placed as far apart as possible, separated
by a piece of ground area. The shielding box of the optical header must be connected well to the
ground plane (by soldering). In addition to that, the power supply of the optical interface area must be
buffered and blocked carefully. Therefore the bypass capacitors must be placed as close to the
transmitter and receiver as possible. 100 nF (Ceramic type) must be placed between every VCC and
GND. Another important point is, that the bypass capacitors of transmitter and receiver must be
located between the transmitter/ receiver and that point, where the two ground planes of receiver and
transmitter are connected together.

Please note
Since very high data rates are transported at low signal levels, Optical Interface Area and
MOST Function Area must be designed with respect to the rules of high-frequency
engineering.

Specification Document  Copyright 1999 - 2005 MOST Cooperation
Page 206

MOST®
Specification

MOST Specification 05/2005

4.2.2 Connection Systems (Pig Tail)

In contrast to existing systems both transceivers are placed remotely with respect to the device’s plug;
e.g., on the PCB near by the MOST Network Interface Controller. They are connected to the device’s
socket with “pig tails” (Pieces of POF). This provides the following advantages:

• Possibility of protecting the end of the fiber at the device’s socket

• Easing of EMI problems

• Flexible placement on PCB

• Small dimensions

• Decoupling of the plugging system of the device from the case of the FOTs

Device

External plug

 Socket of device

Pig tail
Send/ receive unit

Figure 4-3: Connecting the FOTs to the plug of the device via “pig tail”

The “pig tails” are connected to the FOTs and to the device’s plug with a plugging system in each
case.

The device’s plugging system is carried out modularly and in a hybrid way. So one or more pairs of
optical connectors can be combined with different electrical connectors as in a kind of model kit, for
deriving plugging systems for the different devices.

Please note:
The description above is one possible implementation of a “pig tail”. Also other solutions are possible.
However, the mechanical interface is standardized.

Specification Document  Copyright 1999 - 2005 MOST Cooperation

 Page 207

MOST®
Specification

MOST Specification 05/2005

4.3 MOST Function Area
The MOST function area consists of the following components:

• MOST Network Interface Controller

• Crystal

• PLL-Filter

The MOST Network Interface Controller communicates with a microcontroller via I2C (as slave), SPI or
parallel bus. Source data is exchanged with the application via the source data bus.

Reset:
On a reset, the MOST Network Interface Controller activates all bypass mode, switches to Slave
mode, and switches the interrupt pin to inactive (‘1’). After reset is deactivated, the interrupt pin
changes to ‘0’ (PowerOn interrupt). The microcontroller (µC) waits for this interrupt and then initializes
the MOST Network Interface Controller in Timing Master or Slave mode.

For devices with µC area it must be possible in any case, that the MOST Network Interface Controller
can be reset by the respective µC as well (µC reset or Watchdog Reset), since here the MOST
Network Interface Controller is not controlled and initialized via the network, but by the µC.

Please note:
During Reset (not software reset), the signal RMCK is not valid. If RMCK is used as device
clock, this must be taken into consideration.

4.4 µC Area
The microcontroller (µC) area mainly consists of the µC and some memory, and is not mandatory for a
MOST device. In the case of devices with a µC area, there may be applications that are tightly
coupled to the network activity. They need to realize a low standby-current ISTBY, so in PowerOff mode
of the network, the µC must be switched off.

At the same time there are devices, which must be active even if there is no network activity. Here the
µC area must be connected to a continuous power supply.

In addition to that, there are devices, which are to be arranged in between. They are active without
network activity, but are not connected to continuous power (for example, the power supply of a CD
changer during eject of disc).

Specification Document  Copyright 1999 - 2005 MOST Cooperation
Page 208

MOST®
Specification

MOST Specification 05/2005

4.5 Application Area
Application area refers to the application peripherals such as receivers, amplifiers, drives, etc. The
way of implementing an application area is very device-specific. In some devices, especially those
with application peripherals that have high power consumption, it makes sense to supply the
peripherals separately from the logic, i.e., the µC area and the MOST function area, in order to switch
them on and off separately. In other applications, the application area must be connected to a
continuous power supply.

If internal communication is required, the MOST Network with all devices connected to it is powered.
Since this may happen also in such cases where the vehicle is parked, the power consumption in this
communication mode (Logic_Only_Mode) must be kept as low as possible (not only in sleep mode).
This means, that it must be possible to remove the Application Area from power (if procurable).

4.6 Power Supply Area
Please note:
The voltage levels shown in this section here could vary between the systems. Therefore, they
are non-normative and not specified in detail. Binding values must be defined in the
specifications of the System Integrators. The definition and relation between voltage levels
can be found in section 4.7. This chapter describes the power supply for a device that is
usually active when the network is active, so a low standby-current ISTBY must be achieved.
This is the most complex case. Figure 4-4 shows an example for the implementation of a
Power Supply Area.

To meet these requirements, a MOST Network Interface Controller, microcontroller (µC), and
application peripherals are completely separated from power. In addition to that, the application
periphery is powered separately, so that it can be switched off although the logic is still running (e.g.,
drive).

The implementation of the power supply area, as shown in Figure 4-4, mainly consists of:

• Filter, unload-protection, EMI/EMC protection

• Micropower regulator (5V Cont.)

• SwitchToPower detector (optional)

• Power on logic

• Digital power supply (5V Dig)

• Application power supply (U App)

• Bad power condition comparator

• Reset generator

• Watchdog timer

Specification Document  Copyright 1999 - 2005 MOST Cooperation

 Page 209

MOST®
Specification

MOST Specification 05/2005

Power Supply Area

Continous
Power (+) Filter

Unload Protection
EMI/EMC ProtectionGround

Application
Power

5V
Digital

Bad Power
Condition
Comparator

U>UNormal U = USuper (µC)

U<UNormal U = UCritical or ULow (µC)

UApp (Application Power Supply)

5V Dig (u.a. MOST & µC)

SA (Application Switch µC)

5V
MicroPower

<=50µA

Comparator
U>ULow

5V Cont (u.a. Receiver)

Switch To
Power ≥ 1

Status
(Receiver)

& ≥ 1

Hold (µC)

SwitchToPower (µC)

Manual
Reset

Watchdog
Timer

Watchdog
On/Off

5V
Digital

Reset
Generator

5V
Digital

Reset (µC, MOST)

WDTrig (µC)

U > ULow (µC)

SD SA

Figure 4-4: Block diagram of power supply area

Specification Document  Copyright 1999 - 2005 MOST Cooperation
Page 210

MOST®
Specification

MOST Specification 05/2005

Filter and EMI/EMC-Protection filters the power supply and protects the device from incoming
radiation, or it prevents the device from sending out radiation. The Unload-Protection provides the
overcoming of short periods of low voltage.

Continuous
power (+)

Ground

Fuse

12V

Connector
Unload
Protection

Figure 4-5: Input section of power supply area

The Micropower Regulator provides power supply for the receiving FOT unit with wake-up
functionality and of the Power On logic, if the device is switched off on an inactive bus. Furthermore, it
can be used to supply volatile memory devices. In total, the device has to meet a manufacturer-
specific standby current ISTBY. In case of the devices that stay active on an inactive network, or that
become active from time to time on an inactive network, the Micropower Regulator must be
dimensioned to provide more power.

The SwitchToPower Detector is used for ring break diagnosis, where the location of an interruption
of the ring is localized. This is not done during normal operation, but in the car repair, or at the
assembly line. Note that the SwitchToPower Detector is optional.

Since the bus cannot work properly on a ring break, the devices must get a trigger in another way.
Such a trigger is set through a defined switching off of the power supply of all devices for some
seconds by a central power switch. The switched-off state should be maintained for some seconds,
because all devices should be completely unloaded.

Ring break diagnosis is started by switching on power by the central power switch. The
SwitchToPower detector recognizes that the device powered up, and generates a pulse, by which
power of the device stays activated for a certain time. After the reset phase, the micro controller (µC)
recognizes with the help of the SwitchToPower signal that the device was powered, and switches to
ring break diagnosis mode. Before this, Hold must be activated to prevent the device from being
switched off again.

If no communication is started on the network, the µC must deactivate Hold so the device can switch
back to sleep mode.

The SwitchToPower detector must be implemented so that the SwitchToPower pulse is generated
only if the power sinks below a certain threshold. Under no circumstances should short breakdowns
on the supply voltage (e.g., by the starter) lead to a SwitchToPower pulse.

Therefore the SwitchToPower detector gets armed only, if the device was separated from power for at
least 2 seconds, and at most 4 seconds (2 sec < t1 < 4 sec). Only then will it generate a pulse when
the device is connected to power. This must be made sure of with the help of suitable measures
(unload protection diode, and individual electrolyte capacitor at the power supply line of the detector).

Specification Document  Copyright 1999 - 2005 MOST Cooperation

 Page 211

MOST®
Specification

MOST Specification 05/2005

In addition to that, the SwitchToPower detector must supervise the power supply before unload
protection, since, caused by the switching off of all function areas, the voltage will decrease very slow.

The SwitchToPower pulse must have a minimum length t2, which must be long enough for the µC to
safely recognize the pulse.

This is shown in the figure below for ideal signals (vertical edges). The SwitchToPower detector
should be implemented at low cost, and in a way so that it works on ideal conditions as shown in the
figure below. It should not be tried (at high cost) to meet the timing exactly, even on non-ideal
conditions, since imprecise behavior of devices can be compensated for by the duration of the real
trigger, and it is not very critical if, on an alleged trigger (e.g., caused by starting the engine), a device
inadvertently switches to diagnosis mode.

Continuous
power (+)

Switch
To

Power

2s < t1 < 4s t> t2

SwitchToPower
Detector armed

Figure 4-6: Timing of the output signal of the SwitchToPower detector depending on voltage at continuous power

input

The Power On Logic checks to see whether the bus is active, or if the SwitchToPower detector
indicates that the device is freshly connected to power. If, in addition to that, the U > ULow comparator
indicates a sufficient supply voltage, switch SD is closed and Digital Power Supply is connected to
power. Digital Power Supply then supplies the MOST Network Interface Controller and the
microcontroller (µC). As soon as the µC is started, it keeps switch SD closed by an additional input to
the Power On Logic (Hold).

Later on, the µC decides if and when the application periphery (application area) will be powered, and
activates SA.

The ULow comparator indicates whether the input voltage is above the ULow range or not. It is
important to implement a hysteresis here, since when switching off the supply voltage due to low
voltage, the voltage at the input of the comparator will suddenly be increased again. Without
hysteresis, the device would be switched on again, leading to an oscillation of the ULow comparator,
and of the entire digital supply voltage.

Please note:
The hysteresis must be implemented in a way that the output signal of the ULow comparator is
switched off, when the voltage drops to ULow. The output signal of the ULow comparator must
then be switched on again only, if the voltage rises to UNormal.

Specification Document  Copyright 1999 - 2005 MOST Cooperation
Page 212

MOST®
Specification

MOST Specification 05/2005

The ULow comparator must behave in a defined way, even if the voltage keeps decreasing and the
micro power regulator does not stabilize its output voltage, but follows the input voltage only. That
means that the ULow comparator must prevent the device from switching on even when reaching low
voltages (e.g., < 2V...3V).

The Bad Power Condition comparator recognizes critical voltage (UCritical) and super voltage (USuper)
on the supply power, so that appropriate actions can be taken. For the Bad Power Condition signals,
a hysteresis is not mandatory, since they do not control switching off power. The signals are evaluated
only by the micro controller (µC).

The Reset Generator generates reset for the MOST Network Interface Controller and eventually for a
µC if available. It is mandatory for all devices! Possible sources for reset are:

• Device connected to power

• Transition between low voltage to normal operation

• Low voltage on power

• Manual reset (reset button)

• Watchdog timer

The maximum length of the reset pulse is 300ms.

If a µC is available, a Watchdog Timer (eventually with an integrated reset generator) is mandatory.
The watchdog timer initiates a reset at the reset generator, when not triggered by the µC for a certain
time (WDTrig). This closes the all-bypass of the MOST Network Interface Controller. Even if the
application processor does not restart, the device behaves in a neutral manner with respect to the bus.
If a device has no µC, no watchdog timer is required.

Please note:
It must be made sure, that the HOLD mechanism (by which the µC keeps the device powered)
is reset as well. The MOST Network Interface Controller can be reset by the µC as well.

Specification Document  Copyright 1999 - 2005 MOST Cooperation

 Page 213

MOST®
Specification

MOST Specification 05/2005

4.7 Voltage Levels
In general, a device in sleep mode must not wake the bus (light on), caused by low voltage or super
voltage. Four voltage ranges are defined:

Normal operation (UNormal):

Device works normally, all functions are within the specified tolerances.

Super voltage (USuper):

The device is in a safe operation state, which must be defined for each device individually.

Critical voltage (UCritical):

The device is in a safe operation state, which must be defined for each device individually.
The NetInterface works normally, the device can communicate. On a recovery from this state,
the network does not need to be initialized again.

Low voltage (ULow):

The device is in a safe operation state, which must be defined for each device individually.
The voltage has dropped to a value where the device cannot communicate for long. The
NetInterface does not work any longer, so a device that cannot communicate safely has to
switch off light in a safe way.

The following relation holds between the different levels: ULow < UCritical < UNormal < USuper

A safe operation state means that the device must take measures for avoiding failure, overheating, or
destruction of its own or connected functional sections. In addition, it must switch to a state from
which it can resume working normally if normal voltage is restored.

Examples:

• Muting and eventually switching off of amplifiers (danger of overheating, protection of
loudspeakers when switching off caused by low voltage).

• Switching off the servo units of CD/MD player (protecting the optical PickUp).

Remarks:

1. The device must be able to work between UCritical and USuper, and the critical voltage area reaches

down to ULow. It could be tried e.g., to enter Low Voltage as late as possible. Especially when
using switched power supplies, it can be possible to drop the Low Voltage threshold to e.g., 3 V.

2. Hysteresis ranges must be implemented for avoiding oscillating!

Specification Document  Copyright 1999 - 2005 MOST Cooperation
Page 214

MOST®
Specification

MOST Specification 05/2005

Low voltage for a short period of time:

Some devices need a long time for initialization (Operating system, system communication...). If such
a device would be reset even at short pulses of low voltage, it needed to be initialized after that. The
interruption that would occur with respect to the entire system would be recognizable by the customer
(e.g., interruption of audio when starting the engine). Such a device should be able to survive short
Low Voltage periods, without the need of being re-initialized. Especially the initialization status of the
µC must be secured. This may be done, e.g., by using buffer capacitors, unload protection diode, a
separate power supply for the digital section, releasing of the application peripherals, stopping the µC,
etc. Also the operation of the NetInterface can be reduced, e.g., by resetting the MOST Network
Interface Controller, which will then close its all-bypass (except a device containing the Timing
Master). The light should be kept switched on as long as possible, since then the rest of the system
would not be disturbed. After the Low Voltage period the MOST Network Interface Controller will be
re-initialized (in total < 100ms). For more information about the behavior of the software in case of
Low Voltage please refer to section 3.2.5.8 on page 149.

Specification Document  Copyright 1999 - 2005 MOST Cooperation

 Page 215

MOST®
Specification

MOST Specification 05/2005

5 Appendix A: Network Initialization
This Appendix contains some behavioral examples regarding Network Management. Requirements
regarding Network Management behavior of the Network Master and the Network Slaves can be
found in section 3.2 and MOST Dynamic Specification.

5.1 Network Master Section
This section contains scenarios of the behavior of the Network Master during network initialization.

5.1.1 System Startup when a Central Registry is Available
This section contains an example of how the Network Master behaves when initializing the system
with a stored Central Registry.

1. Starting Situation:

Desired configuration:

Rx/TxLog FBlockID InstID
0x0101 AudioDiskPlayer 1
0x0102 AM/FMTuner 1
 AudioDiskPlayer 2
0x0103 TVTuner 1
0x0104 AudioAmplifier 1
 AudioAmplifier 2

Central Registry of last system run

Rx/TxLog FBlockID InstID Available? Position
0x0101 AudioDiskPlayer 1
0x0102 AM/FMTuner 1
 AudioDiskPlayer 2
0x0103 TVTuner 1
0x0104 AudioAmplifier 1
 AudioAmplifier 2

2. System Startup - Checking Configuration: Devices 0x0102 and 0x0103 Available

Rx/TxLog FBlockID InstID Available? Position
0x0101 AudioDiskPlayer 1 No
0x0102 AM/FMTuner 1 Yes 1
 AudioDiskPlayer 2
0x0103 TVTuner 1 Yes 2
0x0104 AudioAmplifier 1 No
 AudioAmplifier 2

 ⇒ Broadcast Configuration.Status (OK)

3. Supplementary Registration: Device 0x0104 Joins Network
(either physical through NetworkChangeEvent, or logical); checking configuration

Rx/TxLog FBlockID InstID Available? Position
0x0101 AudioDiskPlayer 1 No
0x0102 AM/FMTuner 1 Yes 1
 AudioDiskPlayer 2
0x0103 TVTuner 1 Yes 2
0x0104 AudioAmplifier 1 Yes 3
 AudioAmplifier 2

 ⇒ Broadcast Configuration.Status (Control=New, AudioAmplifier.1, AudioAmplifier.2)

Specification Document  Copyright 1999 - 2005 MOST Cooperation
Page 216

MOST®
Specification

MOST Specification 05/2005

4. Shutdown: Normal Shutdown with ShutDown.Start;
Store error “Device 0x0101, AudioDiskPlayer.1 missed”

3b. Variant:
Un-initialized device 0xFFFF joins network at node position 2; checking configuration;
recognizing un-initialized device in system; broadcast Configuration.Status (NotOK);
building addresses; building central registry

Rx/TxLog FBlockID InstID Available? Position
0x0101 AudioDiskPlayer 1 No
0x0102 AM/FMTuner 1 Yes 1
 AudioDiskPlayer 2
0x0103 TVTuner 1 Yes 3
0x0104 AudioAmplifier 1 Yes 4
 AudioAmplifier 2
0x0102 Speech

Recognition
1 Yes 2

⇒ Broadcast Configuration.Status (OK)

Specification Document  Copyright 1999 - 2005 MOST Cooperation

 Page 217

MOST®
Specification

MOST Specification 05/2005

5.1.2 Flow of System Initialization Process by the Network Master
The flow in Figure A-5-1 shows how the Network Master initializes the system. Refer also to Figure
A-5-2 for a flow of how the Network Master performs the configuration requests from the Network
Slaves during the system configuration.

Broadcast:
1st round:

Configuration.Status(OK)
Otherwise:

Configuration.Status(New/
Invalid,FBlockIDList)

Normal Operation
(Application)

Configuration
NotOK?

Broadcast:
ConfigurationStatus(NotOK)

no

Check
System Configuration.

Check all nodes first, then
missing nodes only

Delete Central Registry

Derive logical node address
from position, store it, and

write it to the MOST Network
Interface Controller

First address
initialization ?

no

yes

Set address in MOST
Network Interface Controller

NetworkChange Event
occurred

New information
received?

no

yes

Delay (tWaitAfterNCE)

NetOn Event

no

yes

All nodes answered
request?

yes

Delay (tDelayCfgRequest1)
or

Delay (tDelayCfgRequest2)

Figure A-5-1: Flow of initialization on application level in a NetworkMaster

Specification Document  Copyright 1999 - 2005 MOST Cooperation
Page 218

MOST®
Specification

MOST Specification 05/2005

Checking System

Configuration

Node = 0

Request FBlockIDs

Set Timer
(tWaitForAnswer)

Answer?

Un-initialized
NodeAddress ?

NodeAddress
duplicate?

NodeAddress
and function block

mismatch?

All nodes
requested?

Broadcast
Configuration.Status

(OK/New/Invalid)

End

In case a node
caused NotOK the
third time, ignore
node until next
startup or next

network change
event.

New information
received?

NodeAddress
available in old

registry?

Enter in new Central
Registry

Node = Node + 1

Broadcast
Configuration.Status

(NotOK)

yes

no

yes

no

Timeout?
(tWaitForAnswer)

yes

no

yes

no

yes

no

yes

no

yes

no

yes

no

yes

no

Node
 already requested since

NetOn or NotOK?

Figure A-5-2: Flow in NetworkMaster during requesting system configuration

Specification Document  Copyright 1999 - 2005 MOST Cooperation

 Page 219

MOST®
Specification

MOST Specification 05/2005

5.2 Network Slave Section
The flow in Figure A-5-3 shows how a Network Slave behaves during System Startup and when
receiving Configuration.Status messages.

NetOn Event

Set Logical Node
Address of last run,

or 0xFFFF in the
MOST Network

Interface Controller

Configuration
Status received?

Configuration Status
received

Configuration
Status NotOK?

Derive Logical Node
Address

Clear De-central
Registry

Set Logical Node
Address in MOST
Network Interface

Controller

SystemCommunicationInit:
Init Notification...

Normal operation
(Application)

yes

no

yes

no

Figure A-5-3: Flow of initialization on application level in a Network Slave

Specification Document  Copyright 1999 - 2005 MOST Cooperation
Page 220

MOST®
Specification

MOST Specification 05/2005

6 Appendix B: Synchronous Data Types
This appendix holds information of different synchronous data types.

Note: This information is only relevant until the “MOST Multimedia Streaming Specification” is
released.

Data type 0x00 Audio:

Here, the additional parameters Resolution, AudioChannels, Delay and Handle/Channels are
specified.

DataDescription = Resolution, AudioChannels, SrcDelay, Channels

Parameter Resolution (1 Byte) specifies the resolution of audio samples in Bytes. Parameter
AudioChannels (1 Byte) specifies the number of audio channels, e.g., 1 for mono, 2 for stereo etc.
Parameter SrcDelay (1 Byte) specifies the delay of the synchronous data with respect to the Timing
Master. Each MOST Network Interface Controller keeps track of the mode delay (refer to section
3.1.5.3 on page 120). In the last parameter, the single Channels (1 Byte per channel) are listed. The
first channel corresponds to the handle. If the source has not allocated channels at the moment, it
returns 0xFF.

The MOST Network Interface Controller is able to receive many different audio formats and convert
them to its raw data format, or to generate many different audio formats from the transported raw data.
For audio transmissions, the following minimum appointments are valid:

• Audio-NF will be transported CD-DA compatible (Compact Disk Digital Audio)

• The sequence of channels is: Front left, front right, rear left, rear right. The most significant
Byte is transmitted first.

Examples:

16 Bit Stereo: Resolution = 0x02, Channels = 0x02,

Sequence on the bus: MSB left, LSB left, MSB right, LSB right.

24 Bit Stereo: Resolution = 0x03, Channels = 0x02,

Sequence on the bus: MSB left, central Byte left, LSB left, MSB right, central Byte
right, LSB right.

If the property SourceInfo is not implemented by the source, data type audio is assumed by default.

Specification Document  Copyright 1999 - 2005 MOST Cooperation

 Page 221

MOST®
Specification

MOST Specification 05/2005

Data type 0x01 CD ROM:

This data type describes CD-ROM raw data before being processed by a CD-ROM decoder. This
data might be of type audio, or CD-I, or Video-CD respectively.

DataDescription = Blockwidth, Channels

For data type CD-ROM, parameter “Blockwidth” is transmitted. It specifies the number of transmitted
Bytes per MOST frame.

Examples:

Single Speed CD: Blockwidth = 0x04
Double Speed CD: Blockwidth = 0x08

Per Default, Blockwidth = 0x04 will be assumed.

Specification Document  Copyright 1999 - 2005 MOST Cooperation
Page 222

MOST®
Specification

MOST Specification 05/2005

7 Appendix C: List of Figures
Figure 1-1: MOST Document Structure... 19
Figure 2-1: Model of a MOST device .. 23
Figure 2-2: Communication with a function via its function interface (FI) ... 23
Figure 2-3: Structure of a function block consisting of functions classifiable as methods, properties and

events... 25
Figure 2-4: Setting a property (temperature setting of a heating) ... 26
Figure 2-5: Reading a property (temperature setting of a heating)... 27
Figure 2-6: Status report of property temperature setting ... 27
Figure 2-7: Example for a function interface (FI)... 28
Figure 2-8: MOST Network Service .. 31
Figure 2-9: Ideal audio system .. 32
Figure 2-10: Real audio system .. 32
Figure 2-11: Delegation of functions of all audio components to one audio controller 33
Figure 2-12: Highest layer of the device model... 35
Figure 2-13: Device model for audio sources with player function ... 36
Figure 2-14: Device model for audio sources without player function .. 37
Figure 2-15: Processing of messages including error check on different layers................................... 49
Figure 2-16: Sequences when using Start with and without error .. 50
Figure 2-17: Flow for handling communication of methods (slave’s side) .. 52
Figure 2-18: Flow for handling communication of methods (controller’s side)...................................... 53
Figure 2-19: Virtual communication between two devices on application layer and real comm. via

network... 63
Figure 2-20: Device with MOST address CDC, a function block CD Player with FBlockID CD, and its

functions ... 64
Figure 2-21: Communication between two devices via the different layers .. 65
Figure 2-22: Example for a Slave device .. 66
Figure 2-23: Virtual illustration of the controlled properties in the control device.................................. 67
Figure 2-24: Unambiguous assignment between protocol and variable ... 68
Figure 2-25: Controlling multiple devices .. 69
Figure 2-26: Controlling two identical devices... 70
Figure 2-27: Hierarchical structure of the protocol filter (command interpreter) 71
Figure 2-28: Routing answers in case of multiple tasks (in one controller) using one function 72
Figure 2-29: Reading the function blocks of a device from NetBlock ... 74
Figure 2-30: Requesting the functions contained in an application block ... 75
Figure 2-31: Requesting the function interface of a function... 76
Figure 2-32: Meaning of position x in record (above) and of position y in a record with array (below). 91
Figure 2-33: Position x in case of an array of basic type (left), y in case of an array of record (right).. 92
Figure 3-1: Structure of blocks and frames on the MOST bus.. 112
Figure 3-2: Layer model of a device.. 121
Figure 3-3: Flow chart “Overview of the states in NetInterface”.. 123
Figure 3-4: Behavior of a Master device in state NetInterfaceInit ... 125
Figure 3-5: Behavior of a waking Slave device in state NetInterfaceInit ... 126
Figure 3-6: Behavior of a woken Slave device in state NetInterfaceInit.. 127
Figure 3-7: Examples of the behavior when unlocks occur... 129
Figure 3-8: Behavior in state NetInterfaceNormalOperation ... 130
Figure 3-9: Localizing a fatal error with the help of ring break diagnosis.. 131
Figure 3-10: Behavior during ring break diagnosis in a Timing Master (part 1) 133
Figure 3-11: Behavior during ring break diagnosis in a Slave (part 1).. 134
Figure 3-12: Behavior during ring break diagnosis in a Timing Master and Slave (part 2)................. 135
Figure 3-13: Behavior during ring break diagnosis in a Timing Master and Slave (part 3)................. 136
Figure 3-14: Example (2 devices) for waking of the MOST network via light on the network............. 138
Figure 3-15: Switching off MOST Network via starting method ShutDown in every NetBlock, and

signaling to every application, and switching off light .. 140
Figure 3-16: Prevention of switching off MOST Network via ShutDown.Result (Suspend)................ 140
Figure 3-17: Behavior of a device depending on supply voltage .. 149
Figure 3-18: Alert Levels ... 150

Specification Document  Copyright 1999 - 2005 MOST Cooperation

 Page 223

MOST®
Specification

MOST Specification 05/2005

Figure 3-19: States of the network are shown, as well as the status of the Central Registry............. 155
Figure 3-20: Seeking the logical address of a communication partner ... 174
Figure 3-21: Possible mechanism to adapt transfer rates to the speed of a data sink 175
Figure 3-22: Network Service: Services for control channel ... 176
Figure 3-23: Network Service for the synchronous channel ... 178
Figure 3-24: Network Service: Services for the asynchronous channel ... 187
Figure 3-25: Building a synchronous connection step by step.. 192
Figure 3-26: Step by step removal of a synchronous connection ... 194
Figure 3-27: Secondary Node, scenario 1... 200
Figure 3-28: Secondary Node, scenario 2... 201
Figure 3-29: Secondary Node, scenario 3... 202
Figure 4-1: Example of the structure of a MOST device, the different functional areas and their

interfaces.. 203
Figure 4-2: Optical interface area.. 204
Figure 4-3: Connecting the FOTs to the plug of the device via “pig tail”... 206
Figure 4-4: Block diagram of power supply area... 209
Figure 4-5: Input section of power supply area ... 210
Figure 4-6: Timing of the output signal of the SwitchToPower detector depending on voltage at

continuous power input .. 211
Figure A-5-1: Flow of initialization on application level in a NetworkMaster 217
Figure A-5-2: Flow in NetworkMaster during requesting system configuration................................... 218
Figure A-5-3: Flow of initialization on application level in a Network Slave .. 219

Specification Document  Copyright 1999 - 2005 MOST Cooperation
Page 224

MOST®
Specification

MOST Specification 05/2005

8 Appendix D: List of Tables
Table 2-1: Application example for the principle of derived devices ... 36
Table 2-2: FBlockIDs (part 1) .. 39
Table 2-3: FBlockIDs (part 2) .. 40
Table 2-4: OPTypes for properties and methods .. 44
Table 2-5: Error codes and additional information (part 1).. 45
Table 2-6: Error codes and additional information (part 2).. 46
Table 2-7: Classes of functions with a single parameter... 77
Table 2-8: The different modes of the bit field Channel Type ... 78
Table 2-9: Available units .. 82
Table 2-10: Classes of functions with a multiple parameters.. 89
Table 2-11: Classes of functions for a method.. 105
Table 2-12: Notification matrix (x = notification activated) .. 107
Table 2-13: Parameter Control .. 108
Table 2-14: Protocols with different controls for making entries in the notification matrix, and the

resulting entries. ... 108
Table 3-1: Structure of the MOST frame... 112
Table 3-2: Structure of a frame in the asynchronous area (48 Bytes data link layer)......................... 115
Table 3-3: Structure of a frame in the asynchronous area (alternative data link layer) 116
Table 3-4: Structure of a control data frame.. 117
Table 3-5: Addressing modes vs. address range.. 119
Table 3-6: Events in state NetInterfacePowerOff .. 124
Table 3-7: Events in state NetInterfaceInit .. 124
Table 3-8: Events in state NetInterfaceNormalOperation ... 128
Table 3-9: Events in state NetInterfaceRingBreakDiagnosis .. 131
Table 3-10: Events in System State NotOK (refer to Figure 3-19).. 156
Table 3-11: Events in System State OK (refer to Figure 3-19) ... 157
Table 3-12: Example of a Central Registry ... 159
Table 3-13: Example of a Decentral Registry.. 166
Table 3-14: Functions in NetBlock that handle addresses.. 172
Table 3-15: Functions in ConnectionMaster in conjunction with the administration of synchronous

connections .. 191
Table 3-16: Timing Definitions... 199

Specification Document  Copyright 1999 - 2005 MOST Cooperation

 Page 225

MOST®
Specification

MOST Specification 05/2005

INDEX

µ
µC...207
µC Area ..203, 207

7
7 V Comparator ..211

A
AbilityToWake...138
Abort.. 55
AbortAck.. 55
Absolute ...102
ACK ... 21
Activity Detection ..204
Addressing

Modes (MOST Network Interface Controller)..119
MOST Network Interface Controller..119
Network ..171
Physical Address ..174

ADS ..186
All Bypass...110, 212
Allocating Synchronous Channels ..120
Allocation..120
AMS..176
Application Area ...203, 208
Application Error .. 47
Application Message Service..176
Area

Application Area ...203, 208
Micro Controller Area..203, 207
MOST Function Area..203, 207
Optical Interface Area...203, 204
Power Supply Area...203, 208

Array...89, 92
Array Window .. 98
Mother Array.. 97
Selecting In.. 94

Array Window .. 98
Asynchronous Channel ... 22
Asynchronous Data ..114, 115
Asynchronous Data Transmission Service ...186

B
Bad Power Condition Comparator ..212
Bandwidth...189
Bandwidth (Synch. / Async.).. 22
BitField .. 58
BitSet..77, 86
Block...111
Boolean ... 58
BoolField ..77, 85
Bottom ..100
Boundary ..113, 189
Boundary Descriptor...22, 113, 189
Broadcast ...119
Broadcast Address ...171, 172

Specification Document  Copyright 1999 - 2005 MOST Cooperation
Page 226

MOST®
Specification

MOST Specification 05/2005

BuildSyncConnection ...190
Bypass

All Bypass...110, 212
Source Data Bypass...110

C
Catalog .. 62
Central Registry..74, 147, 215
Channel ..120

Unused ...120
Channel Allocation..120
Class ... 79

List ... 79
CMS ...176
Communication.. 63
Comparator

7 V ..211
Connection Master ...190
Control Channel... 21
Control Data Interface ..117

Description..117
Frame ...117

Control Message
Addressing (MOST Network Interface Controller) ..119

Control Message Service ...176
Control Messaging Interface...117

Description..117
Frame ...117

Controller ... 24
CRC..21, 115
CreateArrayWindow .. 98
Critical Voltage ...149, 212
Critical Voltage Range..213
Crystal ..207

D
Data... 56
Data Link Layer ..186
Data Transport In A MOST System ..111
Data Types .. 56

BitField .. 58
Boolean ... 58
Enum ... 58
Signed Byte ... 59
Signed Long .. 59
Signed Word.. 59
Stream... 60
String ... 60
Unsigned Byte ... 58
Unsigned Long .. 59
Unsigned Word.. 59

Decrement ... 55
Delay ..120
Delay Compensation ..184
Delegation ... 32
DeltaFBlockIDList ...147
Deriving Devices.. 35
DestroyArrayWindow... 98
Device ... 23
Device Hierarchy ... 35
Device Malfunction .. 48
DeviceID.. 38
DeviceNormalOperation ...122
DevicePowerOff..122

Specification Document  Copyright 1999 - 2005 MOST Cooperation

 Page 227

MOST®
Specification

MOST Specification 05/2005

DeviceStandBy ...122
Diagnosis..131
Diagnosis Error Shut Down ..131
Diagnosis Ready ..131
DiagnosisStart ..124
Digital Power Supply ..211
Down ..101
Dynamic Array ... 95

End Line .. 95
Dynamic Behavior ..121

E
Electrical Bypass ..110
EMI/EMC-Protection...210
Empty String .. 60
End Line

Dynamic Array ... 95
Enum ... 58
Enumeration ...77, 84
Error ...45, 50, 54, 55

Application Error
Device Malfunction .. 48
Error Secondary Node... 48
General Execution Error .. 47
Method Aborted ... 49
Parameter Error... 47
Segmentation Error ... 48
Specific Execution Error .. 47
Temporarily Not Available Error... 47

Fatal Error (Network) ..143, 144
Handling In Connection Master ..190
Infinite Loops ... 46
Managing Errors (Network)...143
Network Change Event (Network) ..143
Syntax Error... 46
Unlock (Network) ..143, 145
Voltage Low (Network) ...143

Error Checking (Flow Chart) .. 49
Error Device Malfunction ... 48
Error Method Aborted .. 49
Error Secondary Node... 48
Error Segmentation Error .. 48
Error Shut Down ...128
ErrorAck .. 54
Ethernet ..186, 188
Event ..25, 27

Diagnosis Error Shut Down ..131
Diagnosis Ready ..131
DiagnosisStart ..124
Error Shut Down ...128
Init Error Shut Down ...124
Init Ready ...124
Net On ..128
Normal Shut Down ...128
StartUp ...124

Exponent ... 57

F
Fatal Error (Network) ..143, 144
FBlock ..24, 38
FBlockID...24, 38, 39, 74

List ... 39
FI (Function Interface) ... 28
Filter ...210

Specification Document  Copyright 1999 - 2005 MOST Cooperation
Page 228

MOST®
Specification

MOST Specification 05/2005

FktID...24, 38, 42
Ranges .. 42

FktIDs .. 75
Flags.. 77
FOT ..204
Frame ...111, 117
Function... 25

In Documentation .. 62
Function (Fkt) ...24, 38
Function Block ... 23
Function Catalog ... 62
Function Class

Array.. 92
BitSet ..77, 86
BoolField...77, 85
Dynamic Array ... 95
Enumeration ...77, 84
For Methods ...105
Long Array... 97
Number...77, 81
Record... 90
Switch...77, 80
Text ..77, 83

Function Interface...23, 28, 76

G
General Execution Error .. 47
Get... 54
GetInterface... 55
Group Address ...171, 172

H
Hardware Design Rules (Optical Interface) ..205
Heredity ... 34
High Level Retries ..173
HMI.. 24
Hold Mechanism...212
Human Machine Interface ... 24
Hysteresis...211

I
Increment .. 55
Init Error Shut Down ...124
Init Ready ...124
InstID ... 41
Interface .. 55
Interface for Synchronous Source Data..114
IPX..188

L
Layer Model..121
Length ... 56
Light Off ..143
Lock

Stable ...124, 126, 132
Logic_Only_Mode...208
Logical Address ..171, 174
Long Array... 97
Low Level Retries ...173
Low Voltage..149, 211
Low Voltage Range ..213

Specification Document  Copyright 1999 - 2005 MOST Cooperation

 Page 229

MOST®
Specification

MOST Specification 05/2005

M
MAMAC ..188
Master ..110
Message Notification ..107
Message Sink

Overload...175
Method .. 25
Method Aborted ... 49
Methods... 71
Micro Controller Area..203, 207
Micropower Regulator ..210
More information.. 2
MOST Asynchronous Medium Access Control...188
MOST Device ...23, 121
MOST Frame..111

Boundary Descriptor...113
Preamble ..113
Structure of ...112

MOST Function Area..203, 207
MOST High Protocol...177, 187
MOST Network Interface Controller..110
MOST System Services .. 31
Mother Array.. 97

N
NAK ..21, 175
Name... 79
NetBEUI ...188
NetInterface..121, 123
NetInterfaceInit ...124
NetInterfacePowerOff ...124
NetOnEvent ..128
Network

Switching Off ..139
Waking ...138

Network Change Event (Network) ..143
Network Service ...121
Node Address...171
Node Position ...119
Node Position Address ...120, 171
Normal Operation (Voltage Range) ..213
Normal Shut Down ...128
NormalOperation ..128
Notification..25, 107
Notification Matrix ...107
NSteps..57, 81
Null Termination .. 60
Number...77, 81

O
Object .. 42
Operation..144
Operation Type...24, 38
Optical Interface Area...203, 204
Optical Power Budget...205
OptPwrSwitch ...205
OPType ..24, 38, 44

List ... 44
OPTypes ... 79
Overload In A Message Sink ..175

Specification Document  Copyright 1999 - 2005 MOST Cooperation
Page 230

MOST®
Specification

MOST Specification 05/2005

P
Packet Data ..114, 115

Accessing (MOST Network Interface Controller) ..185
Parameter Error... 47
Phase Jitter...205
Physical Position ..171
Pig Tail ...206
PLL ...207
Position.. 90
Power On Logic ..211
Power Supply Area...203, 208
PowerMaster ..139
Preamble ..113
Primary Node..200
Priority Levels

Control Channel On Network Level ..173
Packet Data Transfer..185

Processing... 50
ProcessingAck... 54
Properties With Multiple Variables... 89
Property... 25

Reading ... 27
Setting ... 26

Q
Query..139

R
RE ..115
Record... 90
Registry

Central Registry..215
Reset Generator ...212
Result .. 50
ResultAck .. 54
Retries

High Level Retries ..173
Low Level Retries ...173

Retry Time..117
Ring Break Diagnosis ...131
RLE ... 75
Routing Engine ...115
Run Length Encoding .. 75

S
SearchAW ..103
Secondary Node...48, 200
Secondary Nodes ...137
Securing Data...186
Seeking Logical Address ..174
Segmentation Error ... 48
Segmented Transfer...176
Selecting In Array .. 94
Set ... 54
SetGet ... 54
Shadow ... 66
Shutdown ...139
Signed Byte ... 59
Signed Long .. 59
Signed Word.. 59
Single Transfer ...176
Slave ..24, 110

Specification Document  Copyright 1999 - 2005 MOST Cooperation

 Page 231

MOST®
Specification

MOST Specification 05/2005

Non Waking ..125
Sleep Mode ..203
Source Data..114

Bypass..110
Handling By The Network Service ..178
Handling In Function Block...179
Interface ...114

Specific Execution Error .. 47
SPI..207
Stable Lock...124, 126, 132
Start... 50
StartAck... 54
StartResult... 50
StartResultAck... 54
StartUp ...124
State ...123

NetInterfaceInit ...124
NetInterfacePowerOff ...124
NormalOperation ..128

Status ...54, 204
Step ..57, 81
Stream... 60
String ... 60
Structure Of Data Packet

48 Bytes Data Link Layer ...115
Alternative Data Link Layer...116

Structure of MOST Frame ..112
Super Voltage...212
Super Voltage Range ...213
Supplier Specific

FBlockIDs ...40, 42
Switch...77, 80
Switching Off Network ..139
SwitchToPower...131
SwitchToPower Detector ..210
SyncConnectionTable ..191
Synchronous Channel ..21, 115
Synchronous Connection

Establishing ..192
Removing ...194

Synchronous Source Data..114
Syntax Error... 46
System Specific

FBlockIDs .. 40
FktIDs .. 42

T
TCP ..177
TCP/IP..188
tDiag_Master ...132
tDiag_Slave ..132
TDM..115
TelID...177, 186
TelLen ..177, 186
Temporarily Not Available Error... 47
Text ..77, 83
Time Division Multiplexing ..115
Timing Master...110
Timing Slave...110
tLock ...124, 125, 132
tMaster ...124
Top ...100
tOptPwrLow ..205
tPwrSwitchOffDelay ..139, 143
Transparent Channels ..114

Specification Document  Copyright 1999 - 2005 MOST Cooperation
Page 232

MOST®
Specification

MOST Specification 05/2005

tRestart...139, 140, 143, 144
tRetryShutDown..139
tShutDownWait...139
tSlave ..124, 144
tSuspend ...139
tUnlock ...128

U
Unclassified Method .. 79
Unclassified Property... 79
Unit ...57, 81

List ... 82
Unload-Protection...210
Unlock (Network) ..143, 145
Unsigned Byte ... 58
Unsigned Long .. 59
Unsigned Word.. 59
Up...101

V
Virtual Communication .. 63
Voltage

Critical Voltage ...149, 212
Critical Voltage Range..213
Handling Low Voltage...214
Low Voltage..149
Low Voltage Range ..213
Normal Operation Voltage Range...213
Super Voltage...212
Super Voltage Range ...213

Voltage Low (Network) ...143

W
Waking ...144
Waking Of The Network ...138
Watchdog Timer ...212
WDTrig ...212

X
Xmit Retry Time..117

Specification Document  Copyright 1999 - 2005 MOST Cooperation

 Page 233

MOST®
Specification

MOST Specification 05/2005

Notes:

Specification Document  Copyright 1999 - 2005 MOST Cooperation
Page 234

MOST®
Specification

MOST Specification 05/2005

Notes:

Specification Document  Copyright 1999 - 2005 MOST Cooperation

 Page 235

MOST®
Specification

MOST Specification 05/2005

Notes:

Specification Document  Copyright 1999 - 2005 MOST Cooperation
Page 236

MOST®
Specification

MOST Specification 05/2005

	Introduction
	Purpose
	Scope
	MOST Document Structure
	References
	Overview

	Application Section
	Overview of Data Channels
	Control Channel
	Synchronous Channel
	Asynchronous Channel
	Managing Synch./Async. Bandwidth

	Logical Device Model
	Function Block
	Slave, Controller, HMI
	First Introduction to MOST Functions

	Functions
	Methods
	Properties
	Setting a Property
	Reading a Property

	Events
	Function Interfaces
	Definition Example
	MOST Network Service
	Delegation, Heredity, Device Hierarchy
	Delegation
	Heredity of Functions
	Deriving Devices / Device Hierarchy

	Protocols
	Protocol Basics
	Structure of MOST Protocols
	DeviceID
	FBlockID
	InstID
	Responsibility
	Assigning InstID
	InstID of NetBlock
	InstID of NetworkMaster
	InstID of Function Block EnhancedTestability
	InstID Wildcards

	FktID
	OPType
	Error
	Start, Error
	StartResult, Result, Processing, Error
	StartAck, StartResultAck, ProcessingAck, ResultAck, ErrorAck
	Get, Status, Error
	Set, Status, Error
	SetGet, Status, Error
	GetInterface, Interface, Error
	Increment and Decrement, Status, Error
	Abort, Error
	AbortAck, ErrorAck

	Length
	Data and Basic Data Types
	Boolean
	BitField
	Enum
	Unsigned Byte
	Signed Byte
	Unsigned Word
	Signed Word
	Unsigned Long
	Signed Long
	String
	Stream
	Classified Stream
	Short Stream

	Function Formats in Documentation
	Protocol Catalogs
	Application Functions on MOST Network (Introduction)
	Controller / Slave Communication
	Communication with Properties Using Shadows
	Communication with Methods
	Standard Case
	Special Case Using Routing

	Seeking Communication Partner
	Requesting Function Block Information from a Device
	Requesting Functions from a Function Block
	Transmitting the Function Interface
	Principle
	Realization of the Ability to Extract the Function Interface

	Function Classes
	Properties with a Single Parameter
	Function Class Switch
	Function Class Number
	Function Class Text
	Function Class Enumeration
	Function Class BoolField
	Function Class BitSet
	Function Class Container

	Properties with Multiple Parameters
	Function Class Record
	Function Class Array
	Function Class Dynamic Array
	Function Class LongArray
	MotherArray
	ArrayWindow
	Positioning an ArrayWindow on a MotherArray
	Re-Synchronization of ArrayWindows

	Function Class Sequence Property

	Function Classes for Methods
	Function Class Trigger Method
	Function Class Sequence Method

	Handling Message Notification

	Network Section
	MOST Network Interface Controller and its Internal Services
	Bypass
	Source Data Bypass
	Master/Slave, Active and Passive Components
	Data Transport
	Blocks
	Frames
	Preamble
	Boundary Descriptor
	MOST System Control Bits

	Source Data
	Definition of Control Data and Source Data
	Differentiating Synchronous and Asynchronous Data
	Source Data Interface
	Transparent Channels
	Synchronous Area
	Asynchronous (Packet Data) Area

	Control Data
	Control Data Interface
	Description

	Internal Services
	Addressing
	Support at System Startup
	Delay Recognition
	Automatic Channel Allocation
	Detection of Unused Channels

	Dynamic Behavior of a Device
	Overview
	NetInterface
	NetInterfacePowerOff
	NetInterfaceInit
	NetInterfaceNormalOperation
	NetInterface Ring Break Diagnosis

	Secondary Nodes
	Power Management
	Waking of the Network
	Network Shutdown
	Device Shutdown
	Performing Device Shutdown
	Waking from Device Shutdown
	Persistence of Device Shutdown
	Response when Device Shutdown is unsupported

	Error Management
	Handling of Light Off
	Fatal Error
	Waking
	Operation

	Unlock
	Network Change Event
	Failure of a Function Block
	“Hanging” of an Application
	Failure of a Network Slave Device
	Low Voltage

	Over-Temperature Management
	Introduction
	Levels of Temperature Alert
	Re-Start Behavior

	Network Management
	General Description of Network Management
	System Startup
	Initialization of the Network
	Initialization on Application Level

	General Operation
	Finding communication partners
	Network Monitoring
	Dynamic Function Block Registrations

	System States
	System State NotOK
	System State OK

	Network Master
	Setting the System State
	Setting the System State to OK
	Setting the System State to NotOK (Network Reset)

	Central Registry
	Purpose
	Contents
	Persistence of the Central Registry
	Responsibility
	Responding to Requests for Information from the Central Registry
	Secondary Nodes

	Specific Behavior During System Startup
	Valid Logical Node Address Not Available
	Valid Logical Node Address Available but No Central Registry
	Valid Logical Node Address and a Central Registry Available
	Stable Network

	Scanning the System (System Scan)
	Configuration Request Description
	Addressing
	Non Responding Network Slaves
	Retries of Non Responding Network Slaves
	Network Slave Continuous cause for System State NotOK
	Duration of System Scanning
	Reporting the Results of a System Scan without Errors

	Invalid Registration Descriptions
	Un-initialized Logical Node Address
	Invalid Logical Node Address
	Duplicate Logical Node Addresses
	Duplicate InstID Registrations
	Error Response

	Updates to the Central Registry
	Disappearing Function Blocks in System State OK
	Appearing Function Blocks in System State OK
	System scan without any change in Central Registry
	Large Updates to the Central Registry in System State OK
	Non-responding Devices in System State OK

	Miscellaneous Network Master Requirements
	Network Change Event (NCE)
	Positioning of the Function Block NetworkMaster in the MOST Network

	Verifying the Central Registry at System Startup (Verification Scan)
	Missing Devices
	Requesting Missing Devices
	Matching Response of Missing Device
	Non-matching Response of Missing Device
	Receiving a Central Registry Request for a Missing Function Block

	Network Slave
	Decentral Registry
	Building a Decentral Registry
	Updating the Decentral Registry
	Deleting the Decentral Registry
	Persistence of the Decentral Registry

	Specific Startup Behavior
	Behavior When a Valid Logical Node Address is Not Available at System Startup
	Behavior When a Valid Logical Node Address is Available at System Startup
	Deriving the Logical Node Address of the Network Master

	Normal Operation of the Network Slave
	Behavior in System State OK
	Behavior in System State NotOK
	Responding to Configuration Requests by the Network Master
	Reporting Configuration Changes to the Network Master
	Failure of a Function Block in a Network Slave
	Failure of a Network Slave Device
	Unknown System State
	Determining the System State
	Finding Communication Partners
	Reaction to Configuration.Status(OK) When in System State NotOK
	Reaction to Configuration.Status(OK) When in System State OK
	Reaction to Configuration.Status(NotOK) when in System State NotOK
	Reaction to Configuration.Status(NotOK) When in System State OK
	Reaction to Configuration.Status(New)
	Reaction to Configuration.Status(Invalid)

	Accessing Control Channel
	Addressing
	Assigning Priority Levels
	Low Level Retries
	High Level Retries
	Basics for Automatic Adding of Physical Address
	Handling Overload in a Message Sink
	MOST Message Services
	Control Message Service
	Application Message Service (AMS) and Application Protocols

	Handling Synchronous Data
	MOST Network Service API
	Function Block Functions
	NetBlock
	General Source / Sink Information
	Synchronous Source
	Synchronous Sink
	Handling of Double Commands

	Compensating Network Delay

	Handling Asynchronous (Packet) Data
	Direct Access to the MOST Network Interface Controller
	Priorities

	MOST Network Service
	Securing Data

	MOST Asynchronous Medium Access Control (MAMAC)

	Controlling Synchronous / Asynchronous Bandwidth
	Connections
	Synchronous Connections
	ConnectionMaster
	Establishing Synchronous Connections
	Removing Synchronous Connections
	Supervising Synchronous Connections
	Enabling Synchronous Output
	Source Drops

	Timing Definitions
	Secondary Node
	Scenario 1
	Scenario 2
	Scenario 3

	Hardware Section
	Basic HW Concept
	Optical Interface Area
	Overview
	Connection Systems (Pig Tail)

	MOST Function Area
	µC Area
	Application Area
	Power Supply Area
	Voltage Levels

	Appendix A: Network Initialization
	Network Master Section
	System Startup when a Central Registry is Available
	Flow of System Initialization Process by the Network Master

	Network Slave Section

	Appendix B: Synchronous Data Types
	Appendix C: List of Figures
	Appendix D: List of Tables
	INDEX

