MOST

Media Oriented Systems Transport

Multimedia and Control
Networking Technology

MOST Specification
Rev 2.4
05/2005

MOST

COOPERATION

© Copyright 1999 - 2005 MOST Cooperation

MOST® MOST

Specification COOPERATION

Legal Notice
COPYRIGHT
© Copyright 1999 - 2005 MOST Cooperation. All rights reserved.

LICENSE DISCLAIMER

Nothing on any MOST Cooperation Web Site, or in any MOST Cooperation document, shall be
construed as conferring any license under any of the MOST Cooperation or its members or any third
party's intellectual property rights, whether by estoppel, implication, or otherwise.

CONTENT AND LIABILITY DISCLAIMER

MOST Cooperation or its members shall not be responsible for any errors or omissions contained at
any MOST Cooperation Web Site, or in any MOST Cooperation document, and reserves the right to
make changes without notice. Accordingly, all MOST Cooperation and third party information is
provided "AS IS". In addition, MOST Cooperation or its members are not responsible for the content of
any other Web Site linked to any MOST Cooperation Web Site. Links are provided as Internet
navigation tools only.

MOST COOPERATION AND ITS MEMBERS DISCLAIM ALL WARRANTIES WITH REGARD TO
THE INFORMATION (INCLUDING ANY SOFTWARE) PROVIDED, INCLUDING THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, AND
NON-INFRINGEMENT. Some jurisdictions do not allow the exclusion of implied warranties, so the
above exclusion may not apply to you.

In no event shall MOST Cooperation or its members be liable for any damages whatsoever, and in
particular MOST Cooperation or its members shall not be liable for special, indirect, consequential, or
incidental damages, or damages for lost profits, loss of revenue, or loss of use, arising out of or
related to any MOST Cooperation Web Site, any MOST Cooperation document, or the information
contained in it, whether such damages arise in contract, negligence, tort, under statute, in equity, at
law or otherwise.

FEEDBACK INFORMATION

Any information provided to MOST Cooperation in connection with any MOST Cooperation Web Site,
or any MOST Cooperation document, shall be provided by the submitter and received by MOST
Cooperation on a non-confidential basis. MOST Cooperation shall be free to use such information on
an unrestricted basis.

TRADEMARKS

MOST Cooperation and its members prohibit the unauthorized use of any of their trademarks. MOST
Cooperation specifically prohibits the use of the MOST Cooperation LOGO unless the use is approved
by the Steering Committee of MOST Cooperation.

SUPPORT AND FURTHER INFORMATION
For more information on the MOST technology, please contact:

MOST Cooperation
Administration

P. O. Box 4327
D-76028 Karlsruhe
Germany

Tel: (+49) (0) 721 966 50 00

Fax: (+49) (0) 721 966 50 01

E-mail: contact@mostcooperation.com
Web: www.mostcooperation.com

Specification Document © Copyright 1999 - 2005 MOST Cooperation
Page 2 MOST Specification 05/2005

MOST®

Specification

MOST

COOPERATION

© Copyright 1999 - 2005 MOST Cooperation
All rights reserved

MOST is a registered trademark

Specification Document

© Copyright 1999 - 2005 MOST Cooperation
MOST Specification 05/2005 Page 3

MOST® MOST

Specification CODPERATION
Contents
1 INTRODUGTIONot iiirieiireess i rrsssirrssssrrssssssransssraassssrenssssransssssaansssresnsssssensssssenssssmenssssnsnnnss 19
1.1 0T oo 7 R 19
L (o] o1 YRR ERRRRRSRPP 19
1.3 MOST DOCUMENT SEIUCKUIEeevvveeeieieeeieieteteteteteietetev et ebaberebebabebararasasssesasasasssssnsnsssnsnsnnnnnnns 19
T4 REFEIENCES ...ttt teteteae e s e tetabsbeaetebebebebabesebebebebasesesesesssnsssnnennsnsnsnrnres 20
RS O A=Y V. 1R PRRRRPPRPPPRPRPPRS 20
2 APPLICATION SECTIONciiiiiiiteeuiiiiiriesssssssisirersnssssssssiissssssssssssemissnssssssimesssnsssssssnnnnmm. 21
2.1 Overview Of Data ChanNEIS............uuuvuiiiiiiiiiiiiiiiiir bbb ererarearaa————a————aaaaaaaaaaaaansnnnnnes 21
211 (070] 1 (o] I O4 o F= T o1 F 21
2.1.2 SyNChronous Channel e 21
2.1.3 ASYNChronoUS ChanNEloiiiiiiiiiiiiie e e 22
214 Managing Synch./JAsync. BandWidth..............coooiiiiiii e 22
2.2 LOgical DeVICE MOUEL........ooiiiiiie e e s 23
2.21 FUNCHON BIOCKottt e e e e e et e e e e e e e eraaanaas 23
2.2.1.1 Slave, Controller, HIML...... ...ttt e e e e et te e e e e e e e eaaaae e e e e e e esatneenaaeeeaneens 24
2.2.1.2 First Introduction to MOST FUNCLONSouuuiiiiiiiieee e e e e e e eaaaes 24
2.2.2 T T aTex (0] 1= 25
2.2.3 1Y/ (=] {0 o 1= 25
224 (o] 01T 1 RPN 26
2241 SettiNg @ PrOPEITYoiiieeieeiiiie ettt et e et 26
2.2.4.2 ReadiNg @ PrOPEItYot e ettt e e e e e e ettt e e e e e e e et aeteaaaeeaaannneeeeaaeaeaaaneaaaeaaann 27
2.2.5 YL o) T 27
2.2.6 a0 aTe (o] o I 0] =Y g £=To] Y= 28
227 Definition EXAMPIE ..o e e e e e e e e e e e e e e e e e e e 29
2238 MOST NEIWOTIK SEIVICEevvveiiriiiieieieteietiieteierere e a—————————anannnanannnnnnnnnnnnnnns 31
229 Delegation, Heredity, Device Hierarchy ... 32
D2 I 1= 1= = i (o o PP RRPTSRE 32
2.2.9.2 Heredity Of FUNCHONScoiiiiiiiiii et e e e e e 34
2.2.9.3 Deriving Devices / Device HIErarChy............cueeoiiiiiiiiiii ettt 35
D B o o) (oo o] £ 38
2.3.1 ed o) (o Toto) Il = F=] (o SRRSO 38
2.3.2 Structure of MOST ProtOCOISuvuvuriiiiiiiiiiiiiiiiiieiiieiirerrerereraresereaans s anasannnnnnnnnnnes 38
P T B B -1 oY | B N 38
D T o = o o] {1 B I 39
D T2 T [11 { | R 41
2.3.2.3.11 RESPONSIDIITY ..ottt 41
2.3.2.3.2 ASSIGNING INSHIDoeiiiiiiiee et e e e e e e e e et e e e e e e st areeaaeeeaanraaaeeeaann 41
2.3.2.3.3 INSHD Of NEIBIOCKcoeeeiiieieeeeeeeeeeeeeeeeeeee ettt eassasasssssasssssssssssssnrsrneeeees 41
2.3.2.3.4 INStID Of NEtWOIKIMIASTENcoeeeeeieeieeeeeeeeeeeeeeeeeee ettt saseaaeaaaaessasssesasssssssssssssnsnsnrnnnes 41
2.3.2.3.,5 InstID of Function Block EnhancedTestabilitycooooiiiiiiieiiie e 41
2.3.2.3.6 INSEID WIIACAIAScceeeeeiie ettt e e e e e e et e e e e e e e e e e e e e e eessaa e eas 42
D T < { | B IR 42
B T T © | 1Y o SRS 44
PG T Tt K 1 ¢ o 45
D T A = o S = ¢ 4 o) 50
2.3.2.5.3 StartResult, Result, Processing, EITOrcooiiiiiiiiiiiiieee et 50
2.3.2.5.4 StartAck, StartResultAck, ProcessingAck, ResultAck, ErrorACKcccoeccveeveeeieiiciiiiieeeee, 54
2.3.2.5.5 Get, STAtUS, EITOr ... et e e e e e e e e s 54
2.3.2.5.8 Set, STAtUS, BITON ...t e e e 54
2.3.2.5.7 SetGet, StAtUS, EITOr.....oue ettt e e e et e e e e e e e et e e e e e e e eraaaaeeeaeeeas 54
2.3.2.5.8 GetInterface, INtEIrfaCe, EITONccooo ettt e e e e e e e e e aeeees 55
2.3.2.5.9 Increment and Decrement, Status, EITOToouuuuiiiii i e 55
PG T Tt L T 2N o Yo o S =1 o] 55
2.3.2.5. 11 ADOIACK, EFTOTACK ...coeeeieeieeeeeeeeeeeeeeeeee ettt saasasasssasasssssssssssssssasssnssnnrnrnes 55
D B S B =Y To | o DSOS OSUPPPSRPN 56
2.3.2.7 Data and BasiC Data TYPESuuiieiiiiiiiiiiiiii ettt et e e e e e e st e e e e e e e e e e e e eneeee 56
D T 0 T = To o [T o F RS 58
D T A = 11 1= o SRS 58
D T 0 T o TV o o 58
Specification Document © Copyright 1999 - 2005 MOST Cooperation

Page 4 MOST Specification 05/2005

MOST®

MOST

Specification CODPERATION
23274 UNSIGNEA BYEE..... i 58
2.3.2.7.5 SIGNEA BYLE....ooiiieiiiiiitiie ettt 59
2.3.2.7.6 UNSIGNEA WOooeiiiiieieieiiieieeeeeeeee ettt ettt ettt et e eeeeeeseeesesesesesasesssnsnsnsnnnsnnnnennns 59
2.3.2.7.7 SIGNEA WOKA ...ttt e e e ettt e e e e e e et e e e eeeeeesasbeseeaaeeesnnsbaseeeaeeesassanaaeeaanns 59
AR I TR U 11T [o T=To 1 o] T PPN 59
P2 B0 (8 TR T | 1= I o oo 59
P T 0 L S 13T T SRRSO SUPRPP 60
p N e B (=1 1o PSRRI 60
2.3.2.712 ClasSified SIrEaMcoii ittt e et e e e e e et eeaaeeseenasreeeaaaeeeannaneeeeanns 61
2.3.2.7.13 SO SIrEAM ...ttt e e e e e et e e e e e e et eaeaaeeeaanaaaaeaaaas 61

2.3.3 Function Formats in DOCUMENtatioNccuiiiiiiiei i e e 62
234 o) (oTote] I 07 £=1 (o T 1< PRSP 62
2.3.5 Application Functions on MOST Network (Introduction)cccociiiiiiiiiiicie e, 63
23.6 Controller / Slave ComMmMUNICAtIONoiiiiii e e e e e e e 66
2.3.6.1 Communication with Properties Using ShadOWsocoiiiiiiiiiiiiiie e 66
2.3.6.2 Communication With MEthOAS.......c..coiiiiiiiee et e e e e e e e e eeees 71

P N T B - To =1 o [- 1T PRSP 71
2.3.6.2.2 Special Case USING ROULINGcoiiiiiiiiiiiiiiie et e e e e e s enanaeeea s 72
2.3.7 Seeking Communication Partner............cooiiiiiiii e 74
2.3.8 Requesting Function Block Information from a Devicecccoeiviiiiiiiiiiiiiceee e, 74
2.3.9 Requesting Functions from a Function BIOCK.............cccciiiiiiiiii e, 75
2.3.10 Transmitting the Function Interface...........ocueiiiii e 76
2.3.10.1 [0 TeT] o[PO TP OUPP 76
2.3.10.2 Realization of the Ability to Extract the Function Interface............cccoooooiiiiiiiiii e, 76
P2 Tt I B ¥ o [o I = 1T S 77
2.3.11.1 Properties with @ Single Parameteroooiiiiiiiii e 77
2.3.11.1.1 FUNCHON Class SWILCR........ciiiiiiiiiiiie et sttt e et e e e e e e snneeas 80
2.3.11.1.2 FUNCtion Class NUMDEToouiiieiiiee et e e et e e s et e e st e e e e sneeeeeeneeeesnnneeas 81
2.3.11.1.3 FUNCHON ClASS TEXE ...eeeeieiiieiiiiee e eiiee e et e et e et e e st ee e e e sn e e s e et e e e s neeeeeaneeeeeeneeeeeanneenn 83
2.3.11.1.4 Function Class ENUMErationueeiiiiiii et e e e e e e eeaa e 84
2.3.11.1.5 Function Class BOOIFIEIAooo e e e e e e e 85
2.3.11.1.6 FUNCLON Class BitSet..........uuiiiiiiiii et e e e e et e e e e e e e nnaaeeeaeas 86
2.3.11.1.7 FUunction Class CONTAINETc..ioiiiiiiiiii ettt e e e e e e e e e e s et e e e e e e s e nnaneeeaaeas 88
2.3.11.2 Properties with Multiple Parametersoooiiiiiiiiiiiiie e 89
2.3.11.2.1 FUNCtioN Class RECOIMM.........cciiueiiiiiiiee ettt ettt e ae e e et e e eneeeesnneean 90
2.3.11.2.2 FUNCHON ClaSS ATAY.....cciceieiiiee e e e ettt e e e ettt e e e e e e et e e e e e e eebbaaeeeaeessaasnsseeeaeeeeeannnseeeeans 92
2.3.11.2.3 Function Class DYNAMIC AITAYoeuiiuiieiiieeeeiieeeeeee e eeeee e st e e e sneeeessneeeeeanaeeeeennaeeesanneeenn 95
2.3.11.2.4 FUunction Class LONGAITAYcueiiiiiiiiiiieeeeiee st e e et e e s st eeeeatee e e senee e e e smneeeeeneeeeeanneeeeanneeeas 97
2.3.11.2.5 Function Class SeqUENCe Property ..ot 104
2.3.11.3 Function Classes for Methods ... 105
2.3.11.3.1 Function Class Trigger Methodoocuiiiiiiiiiiie e 105
2.3.11.3.2 Function Class Sequence Methodoooiiiiiiiiiiii e 106
2.3.12 Handling Message NOtIfication............c.ooiiiiiiiiiii e 107
3 NETWORK SECTION.......ciiiiiiirriicntrrirssr s ssssss s ssssss e s s s s s s s ssn s s es e s sassn s e sa s sns s sanssnnessnsannensns 110
3.1 MOST Network Interface Controller and its Internal Services...........ccccccieiiiiiiiiiiieeeeee 110
3.1.1 Y] o1 T T PP UPP TR 110
3.1.2 S0UICE Data BYPass.......ccoiiiiiie ittt e et e e 110
3.1.3 Master/Slave, Active and Passive COmMpPoNeNntsccuveeeeieiiiiiiiiiiiieeee e 110
3.14 D= e T = < o Yo o SRR 111
1 g B =1 [o7 < S T T T TSP STR PRI 111
3.1.4.2 Frames ... 111
3.1.4.2 PreambIle....... oot e e e e e et e e e e e e eaaeeaaens 113
3.14. 2 2 BOUNAArY DESCIIPIONeeeieiiiie ettt st e e e e e e e 113
3.1.4.2.3 MOST System Control BitScoiiiiiiiiiiii e 113

B TR e s To 10 o = I - | - RS OURRSRR PRI 114
3.1.4.3.1 Definition of Control Data and Source Dataccooiiiiiiiiiiii i 114
3.1.4.3.2 Differentiating Synchronous and Asynchronous Data...........cccccoiiiiiiiiiii i 114
3.1.4.3.3 SoUrce Data INTEITACEccoueiieieie ettt et e e e e e e e e e e eneee e e eneas 114
3.1.4.3.4 Transparent ChanNEISoooiiiiiiiiiei e 114
3.1.4.3.5 SYNCIIONOUS AFCAeeieiiiiii ettt et s et rn e e e e e e e e ee e e nnnas 115
3.1.4.3.6 Asynchronous (Packet Data) Ar€a.........ccceuiiuiiiiiiiiie et 115

B Ty 0 S @70)31 (o] D - - TS PUPUPPUUPPRR 117
3.1.4.4.1 Control Data INterfaCEcuuiiiieiie et 117

Specification Document

© Copyright 1999 - 2005 MOST Cooperation

MOST Specification 05/2005

Page 5

MOST® MOST

Specification CODPERATION
314,42 DESCIIPLON ...ttt et s 117
3.1.5 T (=T y aE= IS T V] o7 SRR 119
R T IR Tt B Ve [0 [(=11 o o O PP PPROTPPP PP 119
3.1.5.2 Support at SYSIEM STAMTUP........uveiiiie i e e e e e e e e e e s e aaans 120
3.1.5.3 Delay RECOGNITION.uviiiiieiieiitiiie et e et e e e e e e e e e e e e e et e e e e e e s eesasbaneeaaeeesnnsbneeasaaanes 120
3.1.5.4 Automatic Channel AllOCAtIONiii ettt e e e e e e e e enee e e e nneeeeeanneeens 120
3.1.5.5 Detection of Unused Channelscceiiiiiiiiiiiiee e e e e e e e e e eneeens 120
3.2 Dynamic Behavior Of @ DEVICEc..ciiiiiiiiiieciiie ettt st e e e e e snneee s 121
3.2.1 OVEIVIBW..... ittt ettt ettt e e ettt e e e ettt e e e eate e e e e aabe e e e e ambeeee e anbeeeeeensteeeeenbeeeeanbeeeennees 121
K (=111 (=4 = Lo Y SRR 123
3.2.2.1 NetInterfaCePOWETORfooo et e e e e e e e st e e e e st e e e enneeaesnneeeeneeeens 124
3.2.2.2 NetINtrfaCeINIt ... et e e e et e e e et e e e naeeeaneeeen 124
3.2.2.3 NetinterfaceNormalOpPEratioNcocciuiiiiiii i e e e e e e e e eeeaen 128
3.2.2.4 Netinterface RiNg Break DiagnoSiS.........cuui ittt 131
R T RS 1ot] o Lo b= VAN VLYo [SR 137
3.24 Power ManagemeENnto e a e 138
3.2.4.1 Waking Of the NEtWOIK.......cooiiii e 138
3.2.4.2 NetWOrk SNULAOWN. ...ttt e e e e ettt et e e e e e e e e e e eeeae e e aannneeaeeanns 139
3.2.4.3 DEVICE SHULAOWNottt e e e e ettt e e e e e s sttt e e e e e e e s nsseaeeeaeeeeannneaaeaaanns 141
3.24.3.1 Performing Device SNULAOWN.........oouiiiiiiiii e 141
3.2.4.3.2 Waking from Device ShUtAOWNuiiiiiiii i e e e eeaas 142
3.2.4.3.3 Persistence of Device SNUIAOWNcoociiiiiiiiieiie e 142
3.2.4.3.4 Response when Device Shutdown is unsupported.............cccoeeeiiiiiiiiiiee e 142
3.2.5 Error ManagemeENt ... e e e e e raaaa s 143
3.2.5.1 Handling of Light Offo e e e e e e e e e e sneeeaneeeens 143
B I T = = I = o TSP PPPPRRP 144
T B L - 1 o o PSPPSR URPRRTIN 144
3.2.5.2.2 OPIAtION ...ttt e r e e et a e s 144
T T U o1 o T PSSP 145
3.2.5.4 Network Change EVENt...........ooi it e e 146
3.2.5.5 Failure of @ FUNCHON BIOCKcooiiiiiiiii e 147
3.2.5.6 “Hanging” of an APPlICAtIONeeiiiiiiiiiiiie e s e e e e e e e e e e s e e aaans 148
3.2.5.7 Failure of a Network SIave DEVICE.........couiiuiiieeiiiee ettt e et e et e e neee e e eneeeeas 148
3.2.5.8 LOW VOIAGEceeieiiiiiet ettt ettt oo oottt e e e e e sttt e e e e e e e b e e ee e e e e e eraeeeeeeaaann 149
3.2.6 Over-Temperature ManagemeENnt...........ccooiiiiiieiiiiiie e ciiee et e e e eree e e snee e e e nees 150
B 0720 0 I [011 o Yo [e 1o o TP RPTSPPPPRRP 150
3.2.6.2 Levels of TEMPErature AlBItooi oot e e 150
3.2.6.3 Re-Start BENAVION ...ttt e e e e e et e e e e e e e e naee e e e e aaas 151
3.3 NetWork ManagemeEntcooo ittt e et e e s b e e e snree e 153
3.3.1 General Description of Network Managementcccceeviiiiiiiiiiie e 153
3.3.1.1 SYSIEM SHAMUD e 153
3.3.1.1.1 Initialization of the NEtWOIKoooi e 153
3.3.1.1.2 Initialization on AppPliCation LEVEcoociiiiiiiiii e 154
3.3.1.2 GeNEral OPEIratiONeeiiiieiieciiiiie e ettt e e e ettt e e e e e et e e e e e e e e saabaeeeaaeeesnasbraeeaeeeesaanaaeaeeaaaan 154
3.3.1.2.1 Finding communication PArNErSuviiiiiiiiiiiiie e 154
3.3.1.2.2 NetWOrK MONITOMINGvveiiiieiiiciiiiiee ettt e e e e et e e e e e e s et e e e e e e e e snnntaereeaeeesensneeas 154
3.3.1.2.3 Dynamic Function Block Registrations.............ccuuuiiiiiiiiiiiee e 154
3.3.2 SYSIEM SHALES .oeriiiiiii e a e e e s aaaa e e 155
3.3.2.1 System State NOtOK........ooiiiiiieiii et e e e e st e e e st e e e e nn e e eenneeeeanneeeesseeeen 156
3.3.2.2 System State OK ... 157
3.3.3 NEIWOIK IMASTENceiiiiee ettt e e e e et e e e e e e e e s nnnreeeaaaeeean 158
3.3.3.1 Setting the System Stateoo i 158
3.3.3.1.1 Setting the System State to OKoiiiiiii e s 158
3.3.3.1.2 Setting the System State to NotOK (Network Reset)occcviiiiiiiiiiiiic e, 158
3.3.3.2 Central REGISINY .. 159
3.3.3.2.1 PUIMPOSE ...ttt ettt e e e ettt e e e e e e et e e e e e e e e e e atbaa e e e e e e e aaaaraeaaaeeeaaaanrrertaaeeearanaaaean 159
B RC J0C 10 O | (=1 o (PR 159
3.3.3.2.3 Persistence of the Central REGIStIY........cccueiiiiiiiieiiee e 159
3.3.3.2.4 ReSPONSIDIILY ..ot e e e a e e eeeeas 159
3.3.3.2.5 Responding to Requests for Information from the Central Registry.........cccocconiiiiiniiiinnnn. 159
3.3.3.2.6 SECONAAIY NOUES ...ttt e et e et e e e ere e e e 160
3.3.3.3 Specific Behavior During System Startupccoooiiiiiiiii e 160
3.3.3.3.1 Valid Logical Node Address Not Available.............ccccoiiiiiiiiiiiii e 160
3.3.3.3.2 Valid Logical Node Address Available but No Central Registrycccccceeveiiirieeiceicciineeen. 160
3.3.3.3.3 Valid Logical Node Address and a Central Registry Available.................cccccoviiiiiiiniiiinnnn... 160
Specification Document © Copyright 1999 - 2005 MOST Cooperation

Page 6 MOST Specification 05/2005

MOST® MOST

Specification CODPERATION
3.3.3.3.4 StabIE NEIWOIK......ce ittt sttt e st e st e e s abe e snbeesnteesnbeesnneeneeen 160
3.3.3.4 Scanning the System (SysStem SCaN)c.eeiiiiiiiiii e 161
3.3.3.4.1 Configuration Request DeSCIIPiONcciiiiiiiiiiiiiiec e e 161
3.3.3.4.2 AQArESSING ...eiiiieiieiitiee et e et e e e e e e e e e ——————aa e e e e e —————eaaeesaaaa——reaaeeeaaaaaaaaeas 161
3.3.3.4.3 Non Responding Network SIAVESccuiiiiiiiieiiiie et 161
3.3.3.4.4 Retries of Non Responding Network SIQVEScooeiiiiiiiiiieeiiiee e 161
3.3.3.4.5 Network Slave Continuous cause for System State NotOKccocciiiiiiiiiieie e, 161
3.3.3.4.6 Duration of System SCanNINg.........cocuiiiiiiiiii e 161
3.3.3.4.7 Reporting the Results of a System Scan without Errorsc.ooccoiiiiiiiiiiiee. 161
3.3.3.5 Invalid Registration DeSCIIPLONS.coiuiiiiiiiie e 162
3.3.3.5.1 Un-initialized Logical NOdE AdAIrESScoeiiiiiiiiiiiiie et e e e e 162
3.3.3.5.2 Invalid LogiCal NOAE AQArESS........cceuiiiiiiiiiiiieiiiiieieieieieeenne 162
3.3.3.5.3 Duplicate Logical NOde AQAIESSESuuiiiiiiiiiiiiiieee e e e e et e e e e e e eeaeeeeeeas 162
3.3.3.5.4 Duplicate InstID RegiStrations...........c.uuiiiiiiiii e 162
3.3.3.5.5 EITONr RESPONSE.....coiiitiieiiit ettt e ettt s et e s et e e et e e s e e e e nreeas 162
3.3.3.6 Updates to the Central REGISIIY........coocueiiiiiiiiiii e e 163
3.3.3.6.1 Disappearing Function Blocks in System State OKcoccoeiiiiiiiiii e, 163
3.3.3.6.2 Appearing Function Blocks in System State OKccccoiiiiiiiiiiii e 163
3.3.3.6.3 System scan without any change in Central Registryccccccooeiiiiiiie i 163
3.3.3.6.4 Large Updates to the Central Registry in System State OK.............ccccoeeiiiiiiiiiiee e, 163
3.3.3.6.5 Non-responding Devices in System State OK...........oooiiiiiiiiiiiiiee e 163
3.3.3.7 Miscellaneous Network Master ReqQUIrements.............coovviiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeee e 164
3.3.3.7.1 Network Change EVent (NCE) ... s 164
3.3.3.7.2 Positioning of the Function Block NetworkMaster in the MOST Network...........cccccovcvviiinnnen. 164
3.3.3.8 Verifying the Central Registry at System Startup (Verification Scan)..........cccocoevviiiiiniiieen, 164
3.3.3.8.1 MISSING DEVICESceiiitiieiiitit ettt ettt ettt e e s e e e st e e e enee e e nree s 164
3.34 NEIWOTK SIQVEcoeiiieieie et e e e e e e s e r e e e e e e s s e nnnaeeeeaaeeeanns 166
3.3.4.1 DeCentral REGISINYcooiiiiiiiiiie et 166
3.3.4.1.1 Building @ Decentral REGISTIYc.ooii it a e e 166
3.3.4.1.2 Updating the Decentral RegiStryuveiiiiiiiiiiieee e 166
3.3.4.1.3 Deleting the Decentral REGISIIY ... 166
3.3.4.1.4 Persistence of the Decentral REGIStIYooviiiriiiiiiie i 166
3.3.4.2 Specific Startup BEhAVIONoooiiiiii e 167
3.3.4.2.1 Behavior When a Valid Logical Node Address is Not Available at System Startup................ 167
3.3.4.2.2 Behavior When a Valid Logical Node Address is Available at System Startup 167
3.3.4.2.3 Deriving the Logical Node Address of the Network Master............cccoccveeeeiiiiiiiiiene e, 167
3.3.4.3 Normal Operation of the Network SIavecccuiiiiiiiiiii e 168
3.3.4.3.1 Behavior in System State OK.........cooiiiiiiiiiei e 168
3.3.4.3.2 Behavior in System State NOtOKcooiiiiiiiiie e 168
3.3.4.3.3 Responding to Configuration Requests by the Network Master..............cccccccviiiiernicnennnen. 168
3.3.4.3.4 Reporting Configuration Changes to the Network Master..............cccoociiiiiiice e, 168
3.3.4.3.5 Failure of a Function Block in @ Network Slave..........ccccccoiiiiiiiiiiiiiii e 168
3.3.4.3.6 Failure of a Network SIave DEVICEccuiiiiiiiiiiiiie e 168
3.3.4.3.7 UNKNOWN SYStemM STate.......eeiiiiiiiii it 168
3.3.4.3.8 Determining the SyStem Stateccccuiiiiiiiiii e 168
3.3.4.3.9 Finding Communication Partners..............coooiiiiiiiiiieie et e e e e e e ee s 169
3.3.4.3.10 Reaction to Configuration.Status(OK) When in System State NotOK.............ccccceevirineen.n. 169
3.3.4.3.11 Reaction to Configuration.Status(OK) When in System State OKcccceviieieiiinenneen. 169
3.3.4.3.12 Reaction to Configuration.Status(NotOK) when in System State NotOKccccceerneen. 169
3.3.4.3.13 Reaction to Configuration.Status(NotOK) When in System State OK............cccccevinieiinnenn. 169
3.3.4.3.14 Reaction to Configuration.StatusS(NEW)c.ceeiriiiiiiiii e 170
3.3.4.3.15 Reaction to Configuration.Status(INvalid).............ceeiiiiiiiii e 170
3.4 Accessing Control Channel ... 171
3.4.1 e [0 [£33 T TR PSPPSR 171
3.4.2 AsSIgNINg Priority LEVEIScooiiiiiiiiiiiee e 173
3.4.3 LOW LeVEI RELMES ...t e e e e et e e e e e 173
3.4.4 HIgh LeVel REeIrESt a e e 173
3.4.5 Basics for Automatic Adding of Physical Address.........ccccoccoveiiiiiie i 174
3.4.6 Handling Overload in @ MeSSage SiNKcooiiiiiiiie e 175
3.4.7 MOST MESSAQE SEIVICES....ceiiiiiiiiiciiiiiieee e e e e ettt e e e e e e s e e e e e e e st eeaaesessennrreeeaaaeeas 176
3.4.7.1 CONtrol MESSAGE SEIVICE........ueiiiiiiiieeiiee ettt e et e e et e e ettt e e e et e e e aee e e e snaeeeeannteeeeanseeeeanneeeeaneeeans 176
3.4.7.2 Application Message Service (AMS) and Application Protocolscccceviiiieiniiieniiiiee e 176
3.5 Handling Synchronous Data...........c.uuiiiiiiiiieiiiiii ettt e et e s e e snnae e snnaeee s 178
3.5.1 MOST NetwOork ServiCe APlooi e 178
3.5.2 Function BIOCK FUNCHONScooiiiiiiiiiii e 179
Specification Document © Copyright 1999 - 2005 MOST Cooperation

MOST Specification 05/2005 Page 7

MOST® MOST

Specification CODPERATION
B T T2 I = 4 =1 o o1 QUSRS UPPUUPPRR 179
3.5.2.2 General Source / Sink INfOrmMation.............oviiiiii i 179

3.5.2.2.1 SYNCAIONOUS SOUICE.......ccciiiiiiiiiiiee e e ettt e ettt e e e e e e e e e e e e e s s sasaeeeaeeesasssbaereaaeeessnsnnees 180
3.5.2.2.2 SYNCIIONOUS SINK ...ciitiiiiiiiiie ettt ettt e ettt e e e et e e st e e e ann e e e enseeeenneas 182
3.5.2.2.3 Handling of Double COMMEANGScoiiiiiiieiiiiee e e e e e e e sneeas 183
3.5.2.3 Compensating Network DEIAYcccceiiiiiiieeiiie et e e e e e e e e e snnee e e neeean 184

3.6 Handling Asynchronous (Packet) Data...........c..oviiiiiiiiiiiiii e 185
3.6.1 Direct Access to the MOST Network Interface Controller...........ccccovvceieieiine e, 185

G TG O o T 4 1 1= USRS 185
3.6.2 MOST NEWOIK SEIVICEiiiiie ettt e e ree e e e nntee e e e enbee e e e aneeeeeennees 186
3.6.2.1 SECUMNG DAtacoeiiiiiiieiiii ettt ettt e et e e e et e e e nee e e e s ne e e e e ante e e e anneeeeenneeeaneeeen 186
3.6.3 MOST Asynchronous Medium Access Control (MAMAC)cccoveeiiiiie i 188
3.7 Controlling Synchronous / Asynchronous Bandwidth.............ccccccooeiiiiiiiiiic e 189
S B 0] o1 [=Te1 o] = TSR USRPPRRRI 190
3.8.1 SyNchronous CONNECHIONSuviiiiiiiiiiciie e e e e e e e e e e e e e e e sanrneeees 190
3.8.1.1 CONNECHONMASTETttt e e et e e s at e e e sabe e e e as e e eanneeeesnneeeaseeeeans 190
3.8.1.2 Establishing Synchronous CONNECIONS.........c.coiiiiiiiiiei e 192
3.8.1.3 Removing Synchronous CONNECHONSciiiiiiiie e e e e e eneeeeeas 194
3.8.1.4 Supervising SYNnchronous CONNECHIONSccciiiiiiiiiiiie et 195
3.8.1.4.1 Enabling Synchronous OUIPULooiiiiiiiiie e 195
R TR I S s To 10 (o=l B (o] oL PSP PR TP 195

3.9 TIimMiNG DEfiNItIONScoiiiiiiii et e e st e e e ane e e 196
3.10 SECONAANY NOTE ..ottt et e e st e e e e e s eaneeas 200
B Tt 1 0t S T = o = T T USSR 200

R Tt B0 T =Y o P-4 o 0 SRR 201

R Tt 0T TS T =Y o P-4 o T SRR 202

4 HARDWARE SECTIONt ssms s s mms s e s e smmmm e e e s s e s mmmn e e e e e e e nnnnnnnn 203

o B = = T (ol LT A O] g To =Y o | PP USPPPRP 203

4.2 Optical INtEIACE AT@......ccc ittt e e et e e e e e s st e e e e e e e s e ananraneeeaeaaaas 204

421 OVEIVIBW..... ettt ettt e e ettt e e ettt e e e eate e e e e aabee e e e smbeeee e anbeeeeeensteeeeannbeeeeennbeeeennees 204
422 Connection Systems (Pig Tail)ooiiiiiiiiiiee e 206

S T |V (@ 1S 3 I ¥ o (o o T Y- RS PRSE 207

N U O N == SRS 207

T Y o] o] o= L1 (o] I Y =T TSR 208

T o 1V Y =T ST 0T o] o] Y 4 Y- USRS 208

Y o = To T3 I USRS 213

5 APPENDIX A: NETWORK INITIALIZATION ..o smms s s mmnn e 215

5.1 NetWOrk Master SECHONccuuiiiiiiiiiee ettt e e e st e e e st e e s stae e e e sraeeeesnneeeee e 215

511 System Startup when a Central Registry is Available..............ccccccooiiiiiii e 215
51.2 Flow of System Initialization Process by the Network Master.............cccccccoeviviiiiinnneenn. 217

5.2 NetWOrk SIave SECHONcooiiiiiii ettt e e st e e e snreeeens 219

6 APPENDIX B: SYNCHRONOUS DATA TYPES. ...t s 220

7 APPENDIX C: LIST OF FIGURES e ms s s s smn e s s smn s 222

8 APPENDIX D: LIST OF TABLES.........o e san e s e 224

110 G P 225

Specification Document © Copyright 1999 - 2005 MOST Cooperation

Page 8 MOST Specification 05/2005

MOST® MOST

Specification COOPERATION

Document History

Changes MOST Specification 2V3-00 to MOST Specification 2V4-00

Change Section Changes
Ref.
2V4_001 General Old chapter 4.2.2 deleted.
2V4_002 General Old chapter 4.2.3 deleted.
2V4_003 211 Removed sentence about asynchronous channel administration.
2V4_004 2.21 Changed description for CD player.
2V4_005 2.2.8 System Service changed to Network Service.
2V4_006 2.3.2.5 Complemented table.
2V4_007 23251 New wording for Segmentation error with Error Info 0x04.
2V4_008 2.3.2.5.1 Clarified ErrorCode 0x01.
2V4_009 2.3.2.5.1 Reserved error code for supplier specific error codes.
2V4_010 2.3.2.5.1 Improved language
2V4_011 2.3.25.1 For clarification, ErrorCode 0x02 is also explained
2V4_012 2.3.25.1 Error codes removed 0x08 and 0x09 removed from paragraph “Application error — Parameter
error”.
2V4_013 23251 Added examples to ‘Syntax error’ and ‘Error secondary node’.
2V4_014 2.3.2.51 Updated figure 2-15.
2V4_015 2.3.255 Added timer twaitrorproperty-
2V4_016 2.3.25.7 Added timer twaitrorproperty-
2V4_017 2.3.2.5.10 Changed description for Abort and AbortAck.
2.3.2.5.11
2V4_018 2.3.2.7 Added data type short stream.
2.3.2.7.13
2V4_019 2.3.2.7.2 Representation of Boolean Data Types
2V4_020 2.3.2.7.12 2lsalcr:iﬂcation that there is no coding Byte before the string and the string is always coded in
2V4_021 2.3.5 InstID changed from 0 to 1.
2.3.6
2V4_022 2.3.111 Added optypes SetGet and Get to function classes Switch and Number in table.
2V4_023 2.3.11.21 Updated tables that describe IntDesc.
2.3.11.2.2
2V4_024 2.3.11.23 Deleted El4 in example.
2V4_025 23.11.24 Completed tables with lost data.
2V4_026 23.11.24.2 Changed wording for ArrayWindow.
2V4_027 2.3.11.3.2 Updated parameter list for Interface in table.
2V4_028 2.3.12 Increased description of deletion of entries.
2V4_029 2.3.12 Notification changed to Fktld.
2V4_030 3.11 Section name Electrical Bypass changed to only Bypass.
2V4_031 3.11 Changed description for electrical bypass.
2V4_032 3.1.51 Reserved device address 0xOFFO as optional for debug purpose.
2V4_033 3.14.3.4 Removal of MOST transceiver register references.
3222
3223
3224
3.6.1.1
6
Specification Document © Copyright 1999 - 2005 MOST Cooperation

MOST Specification 05/2005 Page 9

MOST®

Specification

MOST

COOPERATION

Change Section Changes
Ref.
2V4_034 3.2.2.2 Replaced tyaster aNd tsiave With teonsig-
3.25.21
2V4_035 3.224 Replaced t_off by t_restart in Figure 3-13.
2V4_036 3.24 Changed description.
2V4_037 3242 Added timer tsiaveshutdown-
3.9
2V4_038 3.2.4.3.1 Increased description for “Request Stage”.
2V4_039 3.254 New definition of NCE.
2V4_040 3.3.2.2 Wording changed in bullet number 4.
2V4_041 3.3.2.2 The Connection Manager must not de-allocate channels.
2V4_042 3.3.3.1.2 Changed timer twaiasterneton tO twaiseforescan @nd extended timer to cover
3.3.3.3.4 Configuration.Status(NotOKk).
3.9
2V4_043 3.3.34.7 Changed description.
2V4_044 3.3.3.6.3 Changed the headline.
2V4_045 3.3.3.6.3 NWM should send a Config.New with an empty list when a network scan that was triggered by
an NCE could not detect any changes to the registry.
2V4 046 3.3.4.3.13 Chapter updated.
2V4 047 3.4.1 Group Address part extended.
2V4_048 3.41 Four changed to five.
2V4_049 3.4.2 Reduced chapter about control message priority.
2V4_050 3.5.21 Improved language.
2V4_051 3.5.2.2 Channel lists must always be in ascending order.
2V4_052 3.5.2.2.1 Increased requirements for Connection Manager.
2V4_053 3.5.223 Sink changed to source.
2V4 054 3.7 Deleted part that describes Boundary.
2V4_055 3.8.1.1 InstID changed to 1.
2V4_056 3.8.1.1 Extended parameter lists.
2V4_057 3.8.1.2 ResultAck changed to Result.
2V4_058 39 Added new timer twairorroperty-
2V4_059 3.10 A third scenario added, where primary node handles Ctrl + Stream and the secondary node
handles Packet.
2V4_060 3.10.2 Extended for clarification.

Changes MOST Specification 2V2-00 to MOST Specification 2V3-00

Change Section Changes
Ref.
2V3_001 General NetServices replaced by Network Service
2V3_002 General MOST Transceiver replaced by MOST Network Interface Controller
2V3 003 General Function Catalog replaced by FBlock Specification
2V3 004 General Differentiation between all-bypass and source data bypass.
2V3_005 General Old chapter 3.1.5.2 removed.
2V3 006 General Old chapter 3.1.5.7 removed
2V3_007 General Old chapter 3.3 moved to 3.4 and some contents distributed to other chapters.
2V3 008 General 3.3.8 “Direct Access to 0S8104” and 3.3.9 “Remote Control” were removed.
2V3_009 1 Chapter reworked, new document structure.
2V3_010 21.2 Connection Manager introduced.
2V3_011 214 MOSTSet Boundary removed

Specification Document

Page 10

© Copyright 1999 - 2005 MOST Cooperation
MOST Specification 05/2005

MOST®

Specification

MOST

COOPERATION

Change Section Changes
Ref.

2V3 012 228 Is now MOST Network Service overview. Picture changed.

2V3_013 2.3.2.2 Connection Master not mandatory. FBlock Enhanced Testability added.

2V3 014 2.3.2.3 Description of InstIDs improved. Section on handling InstID of function block Enhanced
Testability added.

2V3 015 2.3.2.3.2 Added Note: Wildcard must not be used for InstID assignment.

2V3 016 23234 InstID NWM added

2V3_017 2.3.2.51 Error codes 0x08 and 0x09 deprecated. Application notified when segmentation error occurs.
No ErrorAck on segmentation errors.

2V3 018 2.3.2.5.3 Added t_ProcessingDefault1, t_ProcessingDefault2, t_WaitForProcessing1,
t_WaitForProcessing2 to text and pictures.

2V3_019 2.3.25.5 teroperty iNtroduced.

2V3_020 2.3.25.7 teroperty iNtroduced.

2V3 021 2.3.2.7 Reference to MOST High removed.

2V3_022 2.3.2.7.10 DAB Charsets added.

2V3 023 2.3.8 FBlock Enhanced Testability does not need to be listed.

2V3 024 2.3.11.2 Overview table added.

2V3 025 2.3.11.24.2 Reference to Layer 2 of NetService removed.

2V3 026 2.3.11.2.5 Function Class Sequence Property added.

2V3_027 2.3.11.3 Overview table added.

2V3 028 2.3.11.3.2 Function Class Sequence Method added.

2V3 029 2.3.12 Error handling extended.

2V3 030 3.1.1 Changed “Rx pin” to “Tx pin”

2V3_031 3.1.4.4.2 Remote Access removed. Transceiver register reference removed. Standalone mode
removed. Remote GetSource added.

2V3_032 3.1.5.1 SAIl removed. Table changed.

2V3 033 3.1.5.2 Standalone mode removed.

2V3 034 3.1.5.3 Transceiver specifics removed

2V3 035 3.1.54 Transceiver specifics removed. Time estimation removed.

2V3_036 3.1.5.8 Rewritten without transceiver registers.

2V3_037 3.2.2.2 As soon as the initialization of the MOST Network Interface Controller starts, the logical node
address in the MOST Network Interface Controller has to be set to OXOFFE.

2V3_038 322 Setting logical node address in MOST Network Interface Controller has been added to Figure
3-4, Figure 3-5, and Figure 3-6. Note that Figure 3-5 and have switched places from previous
version.

2V3 039 3.2.2.4 t Diag Start and t Diag Restart added

2V3_040 3.2.24 Figure 3-10 and Figure 3-12, Diagnosis Normal Shut Down replaced by Diagnosis Ready.

2V3_041 3.24 Power Management section reworked. The Shutdown procedure has been divided into
Network Shutdown and Device Shutdown. The Device Shutdown procedure is new.

2V3_042 3.25 Configuration.Status NotOk added as a case for securing synchronous data. Also changed so
that sinks have to mute in case of an error. Not sources.

2V3_043 3.254 New definition of Network Change Event.

2V3 044 3.2.5.5 Note rewritten and maximum changed to 11 Bytes. NWM has InstID changed to 1

2V3 045 3.2.5.7 Failure of a Network Slave Device added.

2V3_046 3.2.5.8 Figure 3-17, Aplication may PowerOff in “Device Standby”. Voltage levels are no longer
exactApplication removed from power states. Note added.

2V3_047 3.3 Network Management section is new. This section replaces section 3.2.3 and 3.3.5 of MOST
Specification V2.2.

2V3 048 3.3.3.34 Introduced a new timer twaitasterNeton-

2V3 049 3.3.4.3.2 Deleted : The exception...(rest of paragraph)

2V3 050 3.34.3.8 Determination of System State clarified

2V3 051 3.4 This is old chapter 3.3

2V3 052 3.4.1 Address descriptions changed and Internal Node Communication Address added.

2V3 053 345 Section contains an example of Basics For Automatic Adding of Physical Address. This
section is compiled from parts of section 3.3.5 of MOST Specification V2.2.

2V3 054 3.5 Chapter reworked and SourceConnect added. Mute was changed to SetGet.

2V3 055 3.5.1 NetServices routines removed.

2V3 056 3.5.21 Added remark that the SourceHandles function should only be used for debugging purposes.

2V3 057 3.5.2.2 Added that sources and sinks are numbered in ascending order starting from 1.

2V3 058 3.6.2.1 Ethernet Frames replaced by MAMAC Packets.

2V3 059 3.7 Boundary is now SetGet and NWM has InstID 1 in example.

2V3 060 3.8 Reworked. t_DeadlockPrev added. t_CleanChannels added and RemoteGetSource
mentioned in Supervising Synchronous Connections.

2V3 061 3.8.1.4 Reworked supervising synchronous connections

2V3 062 3.9 New Timing Definition table.

2V3 063 4.1 Picture is only an example solution.

Specification Document

© Copyright 1999 - 2005 MOST Cooperation
MOST Specification 05/2005 Page 11

MOST®

MOST

Specification CODPERATION
Change Section Changes
Ref.
2V3 064 4.2.2 Table removed.
2V3 065 4.3 Standalone mode removed.
2V3 066 4.6 Absolute power values removed from the picture. Relative values introduced. SwitchToPower
detector is optional.
2V3 067 4.7 Absolute power values replaced by relative values. Application changed to device.
2V3 068 Appendix A: Added. Contains information from old chapter 3.4.
Network
Initialization

Specification Document

Page 12

© Copyright 1999 - 2005 MOST Cooperation

MOST Specification 05/2005

MOST® MOST

Specification COOPERATION

Changes MOST Specification 2V1-00 to MOST Specification 2V2-00

Change Section Changes
Ref.
2V2_001 Bibliography - Added [9] MAMAC Specification.
2V2_002 1 - Figure 1-1 updated with MAMAC. Function catalog has been split
2V2_003 2.2.2 - Events are only generated if requested.
2V2_004 2.2.4.2 - SetResult changed to SetGet. Incrementing/decrementing added to the table.
2V2_005 2.2.10.1 - Removed a table and the surrounding text.
2V2_006 2.3.2.2 - /?dgledzl\/:lsandatory to Table2-2. Added the following function blocks to Table 2-2 and
able 2-3:

Handsfree Processor: 0x28
DVD Video Player: 0x34
TMC Decoder: 0x53
Bluetooth: 0x54

2V2_007 2.3.2.3 - Changed default instance ID to 0x01. Removed two sentences that had to do with the
old way the instance ids worked.
2V2_008 2.3.24 - Added NotificationCheck.
2V2_009 23.25.1 - Re-numbered the list correctly. Added text to Method Aborted
2V2_010 2.3.25.2 - Removed Result and Processing from the headline. Rephrased the text.
2V2_011 23253 - Figure 2-16 and Figure 2-17 now use “yes” and “no”.
2V2_012 2.3.25.7 - Added information about the Get part of SetGet.
2V2_013 2.3.2.5.9 - Added Status, Error to the headline.
2V2_014 2.3.2.5.10 - Added Error/ErrorAck to the headlines.
23.2.5.11 - Added references to Method Aborted.
2V2_015 2.3.2.7 - Classified stream added. Also a note about MOST High was added.
2V2_016 2.3.2.7 - Values of example 2 corrected. The first sentence on the same page was re-written.
2V2_017 2.3.2.7.10 - RDS character set added and a warning about RDS strings size.

- Also added warning that character sets can’t contain null characters.
- Added example of empty RDS string.

- Added Reserved and Proprietary string types.

- Added Unicode to the UTF8 lines and UTF16 to the Unicode lines.

- Removed the ASCII code type.

2V2_018 2.3.2.7.12 - Classified Stream type added.

2V2_019 2.34 - Removed the paragraph that provided information about Protocol Catalogs in OASIS
tools.

2V2_020 2.3.5 - Changed instance ID to 1. Since default instance ID was changed.

2vV2_021 2.3.1141 - Changed to a table.

- Added Channel Type and Reserved bitfields.
- Added that Unicode is not ASCIl compatible

- Added Table 2-9 and descriptions about the different modes that can be set through
Channel Type.

- Added Function Class Container (0x1B)
- Changed 0x1A to BitSet

2V2_022 23.11.1.2 - Changed mils to miles in Table 2-10.
2V2_023 2.3.11.1.7 - Added Function Class Container.
2V2_024 2.3.11.2.3 - Changed <> to = in front of “0x01not allowed, no access to Tag”
23.11.24.2
2V2_025 23112423 - Clarified that parameters are not used in mode Top and Bottom.
- Clarified what happens when an invalid position of the ArrayWindow is reached.
2V2_026 23.11.24.4 - Added Re-synchronization of ArrayWindows.
2V2_027 2.3.12 - Removed the requirement of three entries.
2V2_028 3.2.2.3 - Added text and Figure 3-7 to better explain how devices behave when unlocks occur.
Specification Document © Copyright 1999 - 2005 MOST Cooperation

MOST Specification 05/2005 Page 13

MOST®

Specification

MOST

COOPERATION

Change Section Changes
Ref.
2V2_029 3.2.24 Changed timer from tiock tO tpiag Lock
2V2_030 3.2.31 Added chapter about Configuration Status Events
2V2_031 3.2.3.2 Added information about tgypass Which is set to 200ms.
Changed Figure 3-14 to include a new timer.
2V2_032 3.2.3.3 Removed the requirement to store the Decentral Registry in buffered RAM.
2V2_033 3.2.51 Added information about electrical wakeups.
2V2_034 3.2.6.3 Added a sentence to explain that the behavior applies to all sinks.
2V2_035 3.2.6.4 Added that the status message may not be sent before the NetworkMaster has asked
the device.
2V2_036 3.26.6 Removed the Power Save Mode and altered the text to fit the new structure.
Figure 3-21 was redrawn.
2V2_037 3.2.7 Included a chapter about Over-Temperature Management.
2V2_038 3.3.1 Changed the text about Node Position Address.
2V2_039 3.3.5.3 Changed a “nein” to "no” in Figure 3-23.
2V2_040 3.3.6 Added a “yes” to Figure 3-24.
2V2_041 3.3.7.2 Added a maximum length to segmented transfers.
2V2_042 3.4.1.1.21 Changed the second parameter to RequiredChannels.
Added that allocation must not be done partially.
2V2_043 34113 Added “Handling of Handling of Double (De)/Allocate/(Dis)Connect Commands”
2V2_044 3.5.21 Added TellD “B” for MAMAC48
2V2_045 3.5.3 Removed chapter about MAMAC and included a short overview and a reference to [9].
2V2_046 3.7.1.2 Point 5 was updated to RequiredChannels. Point 7 was removed.
2V2_047 3.8 tconiig changed to 2000ms.
teypass @dded.
twaitaternce Changed to 200ms, and it is now a minimum
Added the Sentence “This time also applies to a shutdown after a slave-wakeup.” to
:i:::::mgﬁanged to 300 ms or MPR*15 ms. Added “The 300ms minimum applies to
networks containing up to 20 devices. For larger networks the time can be calculated as
follows: trestart > MPR * 15ms”.
tDelaycigrequest added to complement the Figure 3-14.
2V2_048 5 This chapter was removed.

Specification Document

Page 14

© Copyright 1999 - 2005 MOST Cooperation
MOST Specification 05/2005

MOST® MOST

Specification COOPERATION

Changes MOST Specification 2V0-01 to MOST Specification 2V1-00

Change Section Changes
Ref.
2V1_001 1 - Added paragraph introducing object oriented approach
2V1_002 2.3.2.2 - FBlockIDs “System Specific” and “Supplier Specific” added (WG-DA 2000-09-12)
2V1_003 2.3.24 - FktIDs “System Specific” and “Supplier Specific’ added (WG-DA 2000-09-12)

- Handling of proprietary Functions/ Function Blocks by controller added
(WG-DA 2000-02-09)

2V1_004 2322 - Speech output Device added (WG-DA 2000-09-12)

- Speech Database Device added (WG-DA 2000-09-12)

- Corrected FBlockIDs DAB Tuner (0x43) and TMCTuner (0x41)

- FBlock Satellite Radio (0x44) added

- FBlock HeadphoneAmplifier (0x23) added

- FBlock Auxiliarylnput added (0x24)

- FBlock Microphonelnput added (0x26)

- FBlock (0x51) "Telephone mobile" replaced by "Phonebook"

- FBlock Router added (0x8) (WG-DA 2001-01-17)

2V1_005 2.3.2.5.1 - Specification of “Error Secondary node” revised

- Specification of “Error Device Malfunction” added (WG-DA 2000-05-04)
- Specification of “Segmentation Error” added (WG-DA 2000-09-12)
- Hint to avoiding “infinite loops” added

- "No error replies allowed in case of reception of broadcasted messages" added
- Specification of “ Error Method Aborted” added (WG-DA 2000-11-22)

- Added remark that methods in general should be aborted only by that application, which
has started the method.

- Code 0x05 and 0x06: Returning of the value of first incorrect parameter is optional
(WG-DA 2001-01-17).

2V1_006 23.25 - Renamed StartAck -> StartResultAck (0x6) and adapted every occurrence in
specification document.

- Added AbortAck (0x7)
- Added New StartAck (0x8)

2V1_007 23254 - Added New StartAck (0x8)

2V1_008 2.3.2.5.11 - Added AbortAck (0x7)

2V1_009 23.2.6 - Maximum value for LENGTH changed to 65535
2V1_010 2.3.2.7 - Encoding of signed values added

- Codes for ISO 8859/15 8 bit and UTF8 added

- Maximum value for LENGTH changed to 65535
- Examples enhanced

- Data type Boolean revised

- Data type BitField added

- Description of String enhanced (Null Strings)

2V1_011 2.3.253 - Flow chart “Flow for handling communication of methods (controller’s side)”. Error
handling for “Timeout = YES” added

- Changing of timeout (100ms) for "PROCESSING"
2V1_012 2.3.11.1.2 - Specification of NSteps extended
- Units for Speed (m/s), Angle and Pixel added

2V1_013 231114 - Interpretation of Increment and Decrement added
2V1_014 226 - Handling of dynamic changes of Function Interfaces through Notification added
2V1_015 General - MMI replaced by HMI (Human Machine Interface)
2V1_016 3.9 - Description of Secondary Node added
2V1_017 3.2.6.8 - Section completely removed, due to an overlapping with the MOST Function Catalog
2V1_018 3.2 - Generally revised

Specification Document © Copyright 1999 - 2005 MOST Cooperation

MOST Specification 05/2005 Page 15

MOST® MOST

Specification COOPERATION
Change Section Changes
Ref.
3.2.2 - Figure 3-3 “Diagnosis Normal Shutdown” changed to “Diagnosis Ready”
3.2.21 - Table 3-6 changed
3.23.2 - “Network Slave” removed,
“Requesting System Configuration — Network Master” added
3.233 - “Network Master” removed,
“Requesting System Configuration — Network Slave” added
2V1_019 3.24 - Dynamic Behavior of Secondary Nodes added
2V1_020 3.26.4 - "Failure Of A Function Block" added
2V1_021 3.8 - Timeout trynime added

- Timeout teggsiaws changed
- Timeout tanswer changed
- Timeout tpjag master changed

- Timeout tpiag siave changed

2V1_022 2.3.12 - Error handling in case of property failure added
- Notification of Function Interface (FI) added (WG-DA 2001-01-17)

- Error handling added, in case of values in property not yet available during subscription
(WG-DA 2001-01-17)

2V1_023 2.3.2.2 - Note about FBlockID OxFF added

2V1_024 2.3.11.24.2 - Added parameters CurrentSize and AbsolutPosition to description of ArrayWindows

- Added PositionTag, and descriptions for PositionTag and WindowSize
(WG-DA 2001-01-17)

2V1_025 2.3.2.5.10 - Added remark that methods in general should be aborted only by that application, which
has started the method.
2V1_026 2.3.2.5.11 - Function Class BoolField added

- Function Class BitField added
- Description of parameter "OPType" enhanced

2V1_027 2.3.111 - Start of Ring Break Diagnosis revised

2Vv1_028 3.2.51 - Note about wakeup methods added

2V1_029 46,4.7 - Voltage levels and Implementation of Power Supply Area are no longer normative.

2V1_030 General - Eithernet replaced by Ethernet

2V1_031 3.2.22 - Behavior of a waking Slave device (Figure 3-6)

2V1_032 3.5.3 - "MOST Asynchronous Medium Access Control (MAMAC)" added

2V1_033 3.4.3.3 - Equation for delay compensation revised (Tsource < Tnode)

2V1_034 4.2.4 - Hint Added. Description of pig tail is only one of the possible implementations.

2V1_035 3.4.1.1.21 - Method SourceActivity added

2V1_036 3.2.6 - General handling of errors. Synch. connections are removed in case of Fatal Errors.
Specification Document © Copyright 1999 - 2005 MOST Cooperation

Page 16 MOST Specification 05/2005

MOST®

Specification

MOST

COOPERATION

Changes MOST Specification 2V0-00 to MOST Specification 2V0-01

Change Section Changes
Ref.
2V01_001 General Document no longer specified as “Confidential”; Legal Notice inserted.

Changes MOST Specification 1V0 to MOST Specification 2V0

Change Section Changes
Ref.
2V0_001 3.3.1 Equation modified; Startup address OxFFFF
2V0_002 2.1.2/2.25 Section 2.2.5 moved to 2.2.2
2V0_003 2.21 NetBlock “functions related to the entire device.”
2V0_004 2.3.2.2 Table 2-5: Proprietary FBlocklDs 0xFO0..0xFE
2V0_005 2.3.2.3 Completely revised
2V0_006 2.3.24 Minor modification
2V0_007 2.3.25 Completely revised
2V0_008 2.3.2.6 Completely revised
2V0_009 2.3.2.7 Boolfield introduced; Definition of STRING expanded, Examples for Exponent, Step and Unit
2V0_010 2.3.5 Minor modification
2V0_011 2.3.6 Distinguishing Properties and Methods; Communication with routing revised
2V0_012 2.3.10 Transmitting function interfaces. Introduced.
2V0_013 2.3.11 Function Classes (completely revised)
2V0_014 2.3.12 Notification for array properties; Notification re-build at system start
2V0_015 3.222 Error_t_slave replaced by Error_NSInit_Timeout
2V0_016 3.2.23 Completely revised
2V0_017 3.224 Completely revised
2V0_018 3.2.3.2 Completely revised
2V0_019 3.2.3.2 Completely revised
2V0_020 3.2.5.1 Completely revised
2V0_021 3.2.6 General rules added
2V0_022 3.2.6.1 Completely revised
2V0_023 3.2.6 Completely revised
2V0_024 3.353 - Table 3-14;
- sample for receiving logical node address;
- section below Table 3-15
2V0_025 3.3.7.2 TellDs for MOST High Protocol removed
2V0_026 3.3.8.1 Figure 3-25; Set STX bit added
2V0_027 3.4.1.1.1 Replaced “.0.” by “.Pos.”
2V0_028 3.4.1.1.2 Completely revised
2V0_029 3.4.3.3 Equations
2Vv0_030 3.5.21 TellD and TelLen changed; One ID reserved for Ethernet frames
2V0_031 3.71.1 Revised (OPTypes)
2V0_032 3.7.1.2 Revised (OPTypes)
2V0_033 3.7.1.3 Revised (OPTypes)
2V0_034 3.14.2 Table 3-1
2V0_035 3.1.4.22 Revised
2V0_036 3.1.4.3.1 Handling of Isochronous data removed
2V0_037 3.1.4.3.6 Table 3-2; Table 3-3 added, Handling of Isochronous data removed

Specification Document

© Copyright 1999 - 2005 MOST Cooperation

MOST Specification 05/2005 Page 17

MOST®

Specification

MOST

COOPERATION

Change Section Changes
Ref.
2V0_038 3.1.4.4.2 Completely revised
2V0_039 4.1 Figure 4-1
2V0_040 421 Completely revised
2V0_041 422 Revised
2V0_042 4.2.4 Completely revised
2V0_043 4.3 Revised
2V0_044 4.5 Completely revised
2V0_045 4.6 Completely revised
2V0_046 4.7 Completely revised
2V0_047 - General changes in Structure:

- Chapter 2.1 removed, contents included within 2.2.9

- Detailed descriptions of Control Channel (2.2) moved to 3.3
- Introduction of CMS/ AMS moved to 3.3.7

- Chapters 2.6 up to 2.12 moved to 3.2 up to 3.8

- Chapter 2.5 and 2.13 moved to Chapter 5

Specification Document

Page 18

© Copyright 1999 - 2005 MOST Cooperation
MOST Specification 05/2005

MOST® MOST

Specification COOPERATION

1 Introduction

1.1 Purpose

The purpose of this documentation is to be part of the MOST (Media Oriented System Transport)
specification. This document is the main specification, which all other specifications relate to.

1.2 Scope

This document contains specification of the application layer, the network layer and the MOST
Hardware.

1.3 MOST Document Structure

This document structure reflects the documents published by the MOST Cooperation and their internal
dependencies. This structure is subject to changes as new documents are published.

MOST Framework

MOST Specification ‘

Notel
I_ - - - - A A
|

MOST FBLOCK ~Pls: .
MOST FBLOCK APIs: MOST Physical Layer MOST High MAMAC
’ Specification Specification Specification

A

MOST Dynamic Specification

MOST Electrical Physical
Layer Specification

| A

MOST Compliance Specifications

MOST Guidelines MOST Core Compliance
MOST MSC CookBook Specification

Other documents

Figure 1-1: MOST Document Structure

Note1: MOST FunctionBlocks API's will also include the dynamic behavior. A restructuring taking this
into account is planned.

The MOST Specification is a main specification within the MOST Framework. The arrows show the
direction of references.

Specification Document © Copyright 1999 - 2005 MOST Cooperation
MOST Specification 05/2005 Page 19

MOST® MOST

Specification COOPERATION

1.4 References

All documents within this MOST document have references to are listed here with the actual revision
this document is referring to.

Document Revision

Comment: The MOST Specification does not refer to other documents.

1.5 Overview

This specification consists of three sections namely the application section, the network section and
the hardware section. There are different possible physical layers described in respective
documentations. In those cases when optical physical layer is mentioned in this specification it has to
be seen as an example.

Specification Document © Copyright 1999 - 2005 MOST Cooperation
Page 20 MOST Specification 05/2005

MOST® MOST

Specification COOPERATION

2 Application Section

2.1 Overview of Data Channels

2.1.1 Control Channel

On the control channel, data packets are transported to certain addresses, as they are on the
asynchronous (packet) channel. Both channels are secured by CRC.

The control channel also has an ACK/NAK mechanism with automatic retry. It is generally specified
for event-oriented transmissions at low bandwidth and short packet length. It is usable for connections
with a bandwidth of approximately 10KBps, even for short periods of time.

In contrast to that, the asynchronous area is specified for transmissions requiring high bandwidth in a
burst-like manner.

2.1.2 Synchronous Channel

Continuous data streams that demand high bandwidth are transported over the synchronous
channels. The connections are administered dynamically via the control channel. No bandwidth is
reserved for special applications. Although synchronous connections can be built directly by source
and sink nodes, it is recommended that available bandwidth be administered in a central manner,
particularly in larger networks.

Administration of the synchronous resources is handled by the Connection Manager. Since the
Connection Manager must check to see if the connection already exists before it can be built, all
requests for establishing connections must be directed to the Connection Manager. The Connection
Manager may be controlled through FBlock Connection Master, but it may also be controlled in some
other way.

Specification Document © Copyright 1999 - 2005 MOST Cooperation
MOST Specification 05/2005 Page 21

MOST® MOST

Specification COOPERATION

2.1.3 Asynchronous Channel

The asynchronous channel is mainly used for transmitting data with large block size and high demand
for bandwidth in a burst-like manner (graphics, some picture formats and navigation maps).

2.1.4 Managing Synch./Async. Bandwidth

On the MOST Network there are 60 Bytes available for synchronous and asynchronous data transfer.
It is possible to divide up these resources between synchronous and asynchronous channels by
means of a boundary descriptor. The boundary descriptor can be modified either by direct access to
the respective register in a MOST Network Interface Controller, or by the MOST Network Service.

The position of the boundary descriptor depends on the requirements of the system and can be
changed dynamically. Supervision and changing of the bandwidth or position of the boundary is done
in the Timing Master. The Timing Master is responsible for forwarding the information about the
boundary’s position to all nodes in the network. This task is handled automatically on the MOST
Network Interface Controller level. After having changed the boundary descriptor, the synchronous
connections must be re-built.

Specification Document © Copyright 1999 - 2005 MOST Cooperation
Page 22 MOST Specification 05/2005

MOST® MOST

Specification COOPERATION

2.2 Logical Device Model

The following sections describe different kinds of devices. A MOST device is a physical unit, which
can be connected to a MOST network via a MOST Network Interface Controller.

2.2.1 Function Block

On the application level, a MOST device contains multiple components, which are called function
blocks, e.g., tuner, amplifier, or CD player. It is possible that there are multiple function blocks in a
single MOST device, such as a tuner and an amplifier combined in one case and connected to the
MOST network via a common MOST Network Interface Controller. In addition to the function blocks,
which represent applications, each MOST device has a special function block called the NetBlock.
The NetBlock provides functions related to the entire device. Between the function blocks and the
MOST Network Interface Controller, Network Service forms an intermediate layer providing routines to
simplify the handling of the MOST Network Interface Controller.

MOST Device
Function Function Function
o Block Block
Block
NetBlock App”fation Applizcation

™ ' /

’ Network Service ‘

'

’ MOST Network Interface Controller ‘

—4% Physical Interface ’—%

Figure 2-1: Model of a MOST device

Each function block contains a number of single functions. For example, a CD player possesses
functions such as Play, Stop, Eject, and Time Played. To make a function accessible from outside,
the function block provides a function interface (Fl), which represents the interface between the
function in a function block and its usage in another function block.

Function Block Function Block

FI - > Function

Figure 2-2: Communication with a function via its function interface (Fl)

Specification Document © Copyright 1999 - 2005 MOST Cooperation
MOST Specification 05/2005 Page 23

MOST® MOST

Specification COOPERATION

2.2.1.1 Slave, Controller, HMI

There are three types of different function blocks. Function blocks that are always controlled are
called slaves. Function blocks that have an interface to the user are called Human Machine Interfaces
(HMis). Function blocks using functions in other function blocks are called controllers. Controllers
themselves may also be controlled.

A clear separation between HMI, controller and slave cannot always be made in devices that have
many function blocks. Such devices can often be classified with respect to their primary function.

2.2.1.2 First Introduction to MOST Functions

This section gives a brief introduction to the structure of MOST functions, as this knowledge is
necessary to understand the following examples. Chapter 2.3 on page 38 explains the structure of
MOST functions in more detail.

On the application level, a function is addressed independently of the device it is in. Functions are
grouped together in function blocks with respect to their contents. Therefore, function blocks are good
references for external applications to localize a certain function. A function is addressed in a function
block. In order to distinguish between the different function blocks (FBlocks) and functions (Fkt) of a
device, each function and function block has an identifier (ID):

FBlockID . FktID
When accessing functions, certain operations are applied to the respective property or method. The
kind of operation is specified by the OPType. The parameters of the operation follow the OPType,

resulting in the following structure:

FBlockID . FktID . OPType (Data)

Specification Document © Copyright 1999 - 2005 MOST Cooperation
Page 24 MOST Specification 05/2005

MOST® MOST

Specification COOPERATION

2.2.2 Functions

A function is a defined property of a function block that can communicate with the external world,
through the borders of its function block. Functions can be subdivided into two classes:

e Functions that can be started and which lead to a result after a definable period of time. This
class is called “methods”.

e Functions for determining or changing the status of a device, which refer to the current
properties of a device. This class is called “properties”.

In addition to that, there are also events. Events result from properties, if the properties are requested
to report changes (Notification).

Function Block

Method

Property/Event

Figure 2-3: Structure of a function block consisting of functions classifiable as methods, properties and events

2.2.3 Methods

Methods can be used to control function blocks. They are transmitted in the same way as properties.
In general, a method is triggered only once, for example, starting the auto-scanning of a tuner. So
method “auto-scan” is started without parameters. Of course, it is possible to use parameters, e.g., to
specify the direction of auto-scan. Then only one method is needed for tune up and tune down.
Especially in the case of tuners that possess automatic frequency optimization (RDS) it may be useful
to specify the starting frequency for the scanning process as an additional parameter, since the
currently displayed frequency may no longer meet the frequency the receiver is tuned to. So a
method’s call may contain one or more parameters.

After the reception of a method called by a function block, the respective process must be started. If
this is not possible, the function block has to return the respective error message to the sender of the
method call. This may happen if the addressed function block has no method of that kind, if a wrong
parameter was found, or if the current status of the function block prevents the execution of the
method.

After finishing the process, the controlled function block should report execution to the controlling
function block (in a control device). This report may contain results of the process, for example, a
frequency found by the tuner. If a process runs for a long time, it may be useful to return intermediate
results before finishing, such as informing the controlling function block about the successful start of
the process.

Specification Document © Copyright 1999 - 2005 MOST Cooperation
MOST Specification 05/2005 Page 25

MOST® MOST

Specification COOPERATION

For executing methods, the following kinds of messages are exchanged via the bus:

Controller Slave

Start of a Method with Parameters (Start/StartResult) Error with cause for error (Error)
Execution report with results (Result)
Intermediate result (Processing)

The respective MOST functions needed for this messaging are described in depth in chapter 2.3 on
page 38.

2.2.4 Properties

Properties can be read (e.g., temperature), written (e.g., passwords), or read and written (e.g., desired
value for speed control). For each property the allowed operations are specified.

Within a function block, a property is normally represented by a variable that represents something
such as a limit, or a status.

2.2.4.1 Setting a Property

The process of setting a property is described by the example of the temperature setting of a heating
control.

Heating Control Heating
Fl Property
Temp : Byte
Min : -40 Heating.Temp.Set(27)=====) Temp : 27
Max : 80

Figure 2-4: Setting a property (temperature setting of a heating)

Function Temp is a member of the function block Heating, so the HMI sends the instruction
Heating.Temp.Set(27) to function block Heating.

Specification Document © Copyright 1999 - 2005 MOST Cooperation
Page 26 MOST Specification 05/2005

MOST® MOST

Specification COOPERATION

2.2.4.2 Reading a Property

In order for the HMI to display the current temperature, the value of function Temp in function block
Heating must be read. Therefore the HMI sends the instruction Heating.Temp.Get.

Heating Control Heating
FI Property
Temp : Byte
Min : -40 Heating. Temp.Gete====x) Temp : 27
Max : 80

Figure 2-5: Reading a property (temperature setting of a heating)

Heating replies by sending the status message Heating.Temp.Status(27).

Heating Control Heating
FI Property
Temp : Byte

Min : -40 ====Heating.Temp.Status(27) Temp : 27
Max : 80

Figure 2-6: Status report of property temperature setting

For changing and reading of properties, the following types of messages are exchanged via the bus:

Controller Slave
Setting a property (Set/SetGet) Status of property (Status)
Reading a property (Get) Error message with cause of error (Error)

Incrementing / decrementing a property

The MOST functions needed for this messaging are described in depth in chapter 2.3 on page 38.

2.2.5 Events

Properties of a function block may change without an external influence, e.g., the temperature in the
example above, or the current time of a CD player. To display current values using the functions
described up to now, a cyclical reading of the properties (polling) would be required.

To reduce communication between function blocks, it would be useful if function blocks could send
status reports about changes in properties without explicit requests. These are events that occur in a
controlled function block, which initiate the sending of a report (notification).

Specification Document © Copyright 1999 - 2005 MOST Cooperation
MOST Specification 05/2005 Page 27

MOST® MOST

Specification COOPERATION

Events can be used to notify reaching of limits, or the change of measured values in function blocks
(e.g., the play time of a CD player has changed), or in the HMI (e.g., reception of a new value of
mileage received via a CAN gateway). Events are sent only to those function blocks that have
requested it by an entry in the notification matrix (refer to chapter 2.3.12 on page 107). The respective
data should be transmitted in the same message with events.

2.2.6 Function Interfaces

A function interface (FI) represents the interface between a function in a function block, and its use in
another function block.

To communicate with a function, a controller or an HMI needs information about the available
parameters, their limits, and the allowed operations (=FI).

In general, this information is available in the control device, and is encoded in the control program.
The FI was passed on, e.g., like a device specification. To simplify the exchange of Fls, especially
between different manufacturers, a formal description may be used that can be exchanged between
the developers of slaves and controllers, like the well-known header files in the programming language
C.

The contents of the Fls are usually known during implementation of a device (well known functions). It
is also possible that Fls are transported on the bus during runtime, making it possible to dynamically
reconfigure a HMI. In this way, even functions that did not exist during the development of a HMI can
be made available.

Example:
Heating Control Heating
Fl Property
Temp : Byte
Min : -40 Heating.Temp.Set(27)=====) Temp : 27
Max : 80

Figure 2-7: Example for a function interface (FI)

In this example the FI contains information about the data type of the function and about minimum and
maximum value. In real implementations, a Fl contains much more information.

During operation it is possible that a FlI changes dynamically. In that case, all the function blocks that
have subscribed for notification, will get the new interface description through the notification
mechanism. For more information about notification, please refer to section 2.3.12 on page 107.

Specification Document © Copyright 1999 - 2005 MOST Cooperation
Page 28 MOST Specification 05/2005

MOST® MOST

Specification COOPERATION

2.2.7 Definition Example

This section contains the example of a formal definition of a MOST device, MyTuner, its function
blocks and their methods and properties.

MyTuner = Device Device
Tuner : TTuner; {
NetBlock : TNetBlock; TTuner Tuner;
end; TNetBlock NetBlock;
} MyTuner
(Pascal Syntax) (C Syntax)

The definition specifies that MyTuner contains a function block Tuner of type TTuner, and a function
block NetBlock of type TNetBlock.

TTuner is a function block and can be defined in the following way:

TTuner = Object Object
pStation : TStation; {
eTraffic : TTraffic; TStation pStation;
pSensitivity: TSensitivity; TTraffic eTraffic;
mSearch : TSearch; TSensitivity pSensitivity;
end; TSearch mSearch;
} TTuner

Here it is defined that function block TTuner contains the functions pStation (currently tuned station),
pSensitivity, and mSearch (auto scan). In addition to that, the event eTraffic can be generated.

The type of function can be indicated by its name, by adding a special character to the beginning of
the name (p = property, m = method, e = event).

Now property pStation will be defined as follows:

TStation = Property Property
Frequency : Long; {
TP : Bool; long Frequency;
Quality : Byte; Bool TP;
end; Byte Quality;

} TStation;

This describes pStation as a property with the parameters Frequency, TP, and Quality.

Now method mSearch will be defined:

TSearch = Method Method
Up : Bool; {
Start : Long; Bool Up;
end; Long Start;

} Tsearch;

Method mSearch can be started with the parameters Up for direction and Start for the start frequency.

Specification Document © Copyright 1999 - 2005 MOST Cooperation
MOST Specification 05/2005 Page 29

MOST® MOST

Specification COOPERATION

And last, the definition of event eTraffic:

TTraffic = Event Event
TA : Bool; {
end; Bool TA;

} TTraffic;

This definition specifies that event eTraffic has a Boolean parameter TA (traffic announcement).
The FI of property pStation could be defined as follows:

iStation = Interface
iFrequency,
iTP
iQuality
end

Here is the example for the interface description of parameter Frequency.

iFrequency = Interface
Type : Tlong;
Min : 87500
Max : 108000
Unit : TKHz
end

The interface description of property TStation, consisting of interface definitions for the parameters
Frequency, TP, and Quality, can be available as part of the device specification and can be regarded
as a well-known function. It can also be requested by the control device and sent to it encoded in a
suitable form.

Specification Document © Copyright 1999 - 2005 MOST Cooperation
Page 30 MOST Specification 05/2005

MOST® M@S'IZ

Specification COOPERATION

2.2.8 MOST Network Service

The MOST Network Service provides all the basic functionality to operate a MOST system. It contains
a comprehensive library of API functions to interface with the hardware and simplify use of MOST for
the application.

The MOST Network Service offers a wide variety of functions for implementing applications. Some
functions or properties are mandatory for a MOST device. MOST devices should be able to handle
control tasks in a peer-to-peer manner. To provide flexibility in control tasks, MOST devices must be
able to work in an environment with multiple masters.

MOST Network Service provides a basic framework for a MOST device.

MOST
Supervisor
Layer 2

NetworkMaster Address Handler

ALzl Shadow Decentral Registry

Notification
Service

MOST Command Interpreter

Application Message Service
Synchronous Data Transmission Service
Network Service

Asynchronous Data Transmission Service
MOST Network Interface Control Service

Control Message Service

Figure 2-8: MOST Network Service

Specification Document © Copyright 1999 - 2005 MOST Cooperation
MOST Spegification 05/2005 Page 31

MOST® MOST

Specification COOPERATION

2.2.9 Delegation, Heredity, Device Hierarchy

2.2.9.1 Delegation

The principle of delegation provides the combining of functions of several devices to higher, distributed
functions. By combining tasks and by simplifying presentation in the direction to upper layers, device
hierarchies are built, which allow higher-level software to structure and control even complex system
contexts in a clear way. The following example illustrates delegation.

Although car audio systems today consist of many single components, an ideal audio system would
look like the one shown below, from the view of a HMI:

HMI

A
4

» Audio System

Figure 2-9: Ideal audio system

Real audio systems generally look like this:

CD Changer

HMI »> Tuner

A

Amplifier

Figure 2-10: Real audio system

Coordination of the complex interaction of these components must normally be done by the HMI. This
makes the design of the HMI complex and vulnerable to design changes. In addition to that,
coordination of audio components requires detailed knowledge of a special range of problems. This
also applies to other subsystems such as video, communication, and vehicle-based functions.

Specification Document © Copyright 1999 - 2005 MOST Cooperation
Page 32 MOST Specification 05/2005

MOST® MOST

Specification COOPERATION

The goal of delegation is to present the audio components as one single component providing audio
functions. This delegation can be related only to the direct audio area, and not to all devices having
audio functionality like a navigation system or a telephone. If the audio controller were to take over
complete control of these other devices, it would lead to unnecessary dependencies, making the
system inflexible.

Audio System
CD Changer
Audio o
HMI —] Controller I > Tuner
Amplifier

Figure 2-11: Delegation of functions of all audio components to one audio controller

By defining an audio controller, all audio functions can be provided by a single hand, even if the
components are distributed. The audio controller coordinates the audio components in this case. The
audio controller does not need to be a real physical device in the ring; it can be part of another device.
It could even be a software module in the HMI.

Specification Document © Copyright 1999 - 2005 MOST Cooperation
MOST Specification 05/2005 Page 33

MOST® MOST

Specification COOPERATION

The mechanism of delegation of functions is explained below by the example of a ftraffic
announcement. The tuner device has the possibility to detect traffic announcements (TA). For a TA
to be faded in during CD player plays, some steps must be taken.

Before the announcement:
Set the CD to pause, connect the amplifier to the tuner’s channels (eventually send special values for
volume and sound).

After announcement:
CD back to play, amplifier back to CD, restore Volume and sound.

The sequence and the timing of these operations must be done precisely, to avoid unpleasant effects
for the listener. In order to keep the design of the HMI simple, these operations can be handled by a
special unit, the audio controller. With this controller, a distributed higher TA function is built. The
audio controller can provide a TP on/off, although the tuner has no such function. The interface to the
HMI is represented by two simple functions TA and TP. This shows how control can be simplified by
building hierarchies.

2.2.9.2 Heredity of Functions

The example above also shows a second mechanism - the heredity of functions. The audio controller
receives function TA from the tuner and hands it through to the HMI in a modified form. The TA
function of the tuner is complemented by an on/off function. TA information is only passed to the HMI
in case of TP = ON.

Specification Document © Copyright 1999 - 2005 MOST Cooperation
Page 34 MOST Specification 05/2005

MOST® MOST

Specification COOPERATION

2.2.9.3 Deriving Devices / Device Hierarchy

The principle of deriving provides a system of order, where complex devices can be derived from
simpler devices. The parent node provides functions and properties to all child nodes (parent is that
node from which properties are inherited, while child nodes are those which inherit). In complex
devices, this heredity can also be found in a respective hierarchy of classes. All devices in lower
hierarchical devices (derived devices) contain all of the functions and properties of higher device
classes (mandatory functions). These functions and properties can be taken from them or can be
modified. Additional properties and functions can also be defined for these objects. A kind of
“constructional toy” principle is generated, where complex structures are built from simpler ones.

In the figure below, the upper layer of the device hierarchy is displayed. All “intelligent” MOST devices
are derived from MOST device and from NetBlock. This means they contain their entire functionality
(e.g., a MOST Network Interface Controller with the properties NodeAddr and LogicalAddr) and must
support all methods and properties of NetBlock and MOST device. In addition to that, their own
methods and properties are added.

Top Level Device Model
(Control View)

: All methods in these classes are
MostDevice NetBlock “mandatory methods” for derived
$NodeAddr | —{devices.
glogicalAddr “FBlockIDs()
“#Devicelnf()
/
=
- _ /S~ / \
/

- / \

/
SynchronousSink
IntelligentMostDevice y SynehronousSource
*Connect() %Allocate()
$FktIDs() “Disconnect() “DeAllocate()
*Notification() ®Mute()

Figure 2-12: Highest layer of the device model

Specification Document © Copyright 1999 - 2005 MOST Cooperation
MOST Specification 05/2005 Page 35

MOST®

Specification

MOST

COOPERATION

Device Model Synchronous Sources and Players

(Control View)

IntelligentMostDevice

®FKtIDs()
*Notification()

CdPlayer

Player SynchronousSource
*Play() “Allocate()
#Stop() #DeAllocate()
*Next() *Mute()
*Prev()

DvdPlayer SoundGenerator

%StopAudioPattern()

Figure 2-13: Device model for audio sources with player function

In addition to the inherited functions, the players can have their own methods and properties; for
example, StopAudioPattern in the class SoundGenerator.

An application for derived devices is the designing of function or telegram catalogs for individual
devices. As shown in the following table, deriving avoids re-defining all functions of the CD changer
(CDMulti). They can be derived mostly from simple drives.

Device

Group of Functions

Master

MOST Network
Interface Controller

+ NetBlock Master

Slaves

%

+ NetBlock Slave

All drives

%

%

+ Basic drive

CDSingle

%

%

%

+ CD-Functions

CDMulti

%

%

%

%

+ Changer

Table 2-1: Application example for the principle of derived devices

Specification Document

Page 36

© Copyright 1999 - 2005 MOST Cooperation

MOST Specification 05/2005

MOST®

Specification

MOST

COOPERATION

Device Model Synchronous Sources

(Control View)

IntelligentMostDevice

$FktIDs()
¥Notification()

Phone

%OffHook()
$HangUp()
¥ExternalCall()

SynchronousSource

%Allocate()
*DeAllocate()
*Mute()

Navigation

%CalcRoute()
#SetupOptimize()

Tuner

%TuneUp()
%TuneDown(

Figure 2-14: Device model for audio sources without player function

Specification Document

© Copyright 1999 - 2005 MOST Cooperation

MOST Specification 05/2005

Page 37

MOST® MOST

Specification COOPERATION

2.3 Protocols

2.3.1 Protocol Basics

As already described in section 2.2.1.2 on page 24, functions are addressed without considering the
devices they belong to (on the application level). Functions are grouped together in function blocks
with respect to their contents. This makes function blocks to a good reference for localizing a certain
function for an external application. A function is addressed in a function block. To distinguish
between the different function blocks (FBlocks) and functions (Fkt) of a device, each function and
function block has a name, or an identifier (ID) respectively:

FBlockID . FktID
When accessing functions, certain operations are applied to the respective property or method. The
kind of operation is specified by the OPType, followed by the parameters of the operation. This results

in this structure:

FBlockID . FktID . OPType (Data)

2.3.2 Structure of MOST Protocols

The principal structure of protocols on the application layer is:
DevicelD . FBlockID . InstID . FktID . OPType . Length (Data)

In addition to section 2.2.1.2 on page 24, three components were added: InstIlD, Length and
DevicelD. The individual elements are explained below.

2.3.2.1 DevicelD

The DevicelD stands for a physical device, or a group of devices in the network (ID is network specific
and has a length of 16 bits). It precedes the protocol, and does not need to be interpreted on the
application level.

If a function receives a protocol, the DevicelD contains the logical node address of the sender
(DevicelD = TxAdr = TxLog). In case of an answer, it precedes the protocol as the receiver’'s address
(DevicelD = RxAdr = RxLog). Here a group address (DevicelD = RxAdr = GroupAddress), or the
broadcast address (DevicelD = RxAdr = 0x03C8) could be used too.

If the sender does not know the receiver's address, the DevicelD is set to OxFFFF. In that case, it is
corrected by the Network Service.

Specification Document © Copyright 1999 - 2005 MOST Cooperation
Page 38 MOST Specification 05/2005

MOST® MOST

Specification COOPERATION

2.3.2.2 FBlockID

The FBlockID is the name of a special function block. Every function block with a special FBlockID
must contain certain specific functions. In addition to those mandatory functions, it can contain other
functions. There are “System Specific” proprietary FBlockIDs, which can be used by any System
Integrator (car maker). They are specific for a system and are coordinated between the OEMs
developing devices for this system. A second kind of proprietary FBlockIDs is called “Supplier
Specific”. Those FBlocklDs can be used by OEMs e.g., for development purpose. The special
FBlocklD OxFF addresses all function blocks within a MOST device, except the NetBlock. Since this
can be regarded as a broadcast function, no error status messages should be returned.

The table below shows a (incomplete) collection of FBlockIDs:

Kind FBlockID 8 Bit Name Explanation
Administration 0x0x
0x00 Network Service Telegrams that are related to
network tasks are sent and received
here. They are not passed to the
application.
0x01 NetBlock Mandatory for each device.
0x02 NetworkMaster Mandatory for each system.
0x03 ConnectionMaster Mandatory for each system .
0x04 PowerMaster
0x05 Vehicle
0x06 Diagnosis
0x08 Router
0xOF EnhancedTestability Mandatory for each device
Operation 0x1x
0x10 Human Machine Interface (HMI)
0x11 Speech Recognition
0x12 Speech Output Device
0x13 Speech Database Device
Audio 0x2x
0x20 Audio Master
0x21 Audio DSP
0x22 Audio Amplifier
0x23 HeadphoneAmplifier
0x24 Auxiliarylnput
0x26 Microphonelnput
0x28 Handsfree Processor
Drives 0x3x
0x30 Audio Tape Recorder
0x31 Audio Disk Player
0x32 ROM Disk Player
0x33 Multimedia Disk Player
0x34 DVD Video Player

Table 2-2: FBlockIDs (part 1)

Note: OxOF is mandatory for each device due to compliance reasons.

Specification Document © Copyright 1999 - 2005 MOST Cooperation
MOST Specification 05/2005 Page 39

MOST® MOST

Specification CODPERATION
Kind FBlockID 8 Bit Name Explanation
Receiver 0x4x

0x40 AM/FM Tuner
0x41 TMCTuner
0x42 TV Tuner
0x43 DAB Tuner
0x44 Satellite Radio
Communication | 0x5x
0x50 Telephone
0x51 Phonebook
0x52 Navigation System
0x53 TMC Decoder
0x54 Bluetooth

Video 0x6x

0x60 Display

0x61 Camera

0x62 Video Tape Recorder
Proprietary

0xC0...C7 System Specific

0xC8 Reserved

0xC9...0xEF System Specific

0xF0...0xFE Supplier Specific

0xFC Secondary Node

0xFE Reserved

OxFF All

Table 2-3: FBlockIDs (part 2)

System Specific FBlocklDs (0xCO0...0xC7, and 0xC9...0xEF) can be used by any System Integrator
(car maker). They are specific for a system and are coordinated between the OEMs developing
devices for this system. Supplier Specific FBlocklDs (0xF0...0xFE) can be used by OEMs e.g., for
development purpose.

Specification Document © Copyright 1999 - 2005 MOST Cooperation
Page 40 MOST Specification 05/2005

MOST® MOST

Specification COOPERATION

2.3.2.3 InstIiD

There may be several equal’ function blocks (Instances) with the same FBlockID in the system (two
CD changers, four active speakers, several diagnosis blocks, etc.). In order to address these function
blocks unambiguously, the FBlockID is complemented by an eight-bit instance identification number
(InstID). The combination of FBlockIDs and InstID is referred to as the functional address.

2.3.2.3.1 Responsibility

Each device is responsible for the uniqueness of functional addresses within the device. The Network
Master is responsible for the uniqueness of functional addresses within the entire system. Refer to
section 3.3.3.

2.3.2.3.2 Assigning InstID

By default, every function block has InstID 0x01. In case there are several function blocks of the same
kind within one MOST device, the default numbering within the device starts at 0x01 and is then
incremented. In principle, as long as the InstID provides the possibility to differentiate between equal
function blocks, the InstID can be chosen in any way. For example, in static systems the system
integrator may choose to use hard coded InstIDs or set the InstIDs depending on certain ranges with
respect to the supported functions of the function block. Note: Wildcard must not be used for InstID
assignment.

2.3.2.3.3 InstID of NetBlock

InstIDs of NetBlocks are derived from the node position address of the MOST device. Therefore, they
start counting at 0x00.

2.3.2.3.4 InstID of NetworkMaster

InstID of Network Master may be zero; default value is 0x01. Requests to NetworkMaster shall be sent
to InstID 0x00 (wildcard ref 2.3.2.3.6).

2.3.2.3.5 InstID of Function Block EnhancedTestability

InstIDs of function block EnhancedTestability are derived from the node position address of the MOST
device. Therefore, they start counting at 0x00.

' The expression “equal” means that those function blocks have the same functionality (e.g., two CD
drives). This means that the basic functions are equal, but there is the possibility that they differ with
respect to the total functionality (e.g., CD drive with, or without random play).

Specification Document © Copyright 1999 - 2005 MOST Cooperation
MOST Specification 05/2005 Page 41

MOST® MOST

Specification COOPERATION

2.3.2.3.6 InstID Wildcards

There are some special InstID values (wildcards) that can be used when addressing FBlocks. They
will be treated as follows:

0x00 Don't care (within a Device). The Device dispatches the message to one specific function
block in the device.

OxFF Broadcast (within a Device). The message is dispatched to all instances of the matching
function block.

Wildcards may not be used when replying to a request. In this case the correct InstlD of the
respective function block has to be used.

2.3.2.4 FktID

The FktID stands for a function. This means a function unit (Object) within a device, which provides
operations that can be called via the network. Examples for functions are: play of a drive, speed limit
in an on-board computer, etc. On network level, the FktID is encoded in 12 bits, so 4096 different
methods and properties can be encoded per function block. On the application level, the FktID is
extended to 2 Bytes. Exceptions to this rule will be explicitly marked.

The address range of FktIDs is subdivided in the following sections:

1. Coordination (0x000...0x1FF)
Functions for administrative purposes in a function block.

2. Mandatory (0x200...0x3FF)
Functions that are mandatory for the application of the function block, like the basic drive in
all function blocks describing drives.

3. Extensions (0x400...0x9FF)
Optional functions.

4. Unique (0xA00...0xBFF)
Functions that are defined unambiguously in the entire system.
Attention, these must be coordinated with the entire system!

5. Proprietary / System Specific (0xC00...0xEFF)
Functions, which can be used by any System Integrator (car maker). They are specific
for a system and are coordinated between the OEMs developing devices for this system.

6. Proprietary/ Supplier Specific (0xF00...0xFFE)
Functions, which can be used by OEMs e.g., for development purpose.

Specification Document © Copyright 1999 - 2005 MOST Cooperation
Page 42 MOST Specification 05/2005

MOST® MOST

Specification COOPERATION

Some FktIDs in a function block that contains an application are predefined:

0x000 FktiDs Reports the FktIDs of all functions contained in the FBlock
(refer to section 2.3.9 on page 75).

0x001 Notification Distribution list for events (refer to section 2.3.12 on page
107).

0x002 NotificationCheck Check whether the distribution list for events is still as it
should be.

When developing proprietary Function Blocks, all possible Function IDs can be used freely, except
those taken from the ranges:

Unique
Coordination

In case proprietary Function Blocks contain functions within the ranges Unique or Coordination, those
functions must be in accordance to MOST FBlock Specifications.

Please note:
Before using any proprietary Function or proprietary Function Block, a controller must verify
the identity of the device. This can be done e.g., by reading the Devicelnfo property.

Specification Document © Copyright 1999 - 2005 MOST Cooperation
MOST Specification 05/2005 Page 43

MOST® MOST

Specification COOPERATION

2.3.2.5 OPType

This field stands for the operation which must be applied to the property or method specified in FktID:

OPType For Properties For Methods
Commands:
0 Set Start
1 Get Abort
2 SetGet StartResult
3 Increment Reserved
4 Decrement Reserved
5 Getlnterface Getlnterface
6 Locked for definitions StartResultAck
7 Locked for definitions AbortAck
8 Locked for definitions StartAck
Reports:
9 ErrorAck ErrorAck
A Locked for definitions ProcessingAck
B Reserved Processing
C Status Result
D Locked for definitions ResultAck
E Interface Interface
F Error Error

Table 2-4: OPTypes for properties and methods

Specification Document © Copyright 1999 - 2005 MOST Cooperation
Page 44 MOST Specification 05/2005

MOST®

Specification

MOST

COOPERATION

2.3.2.5.1 Error

Error is reported only to the controller that has sent the instruction. On Error, an error code is reported
in the data field (Data[0]), along with additional information as shown in Table 2-5 and Table 2-6.

ErrorCode ErrorCode Description Errorinfo Errorinfo Description
Data[0] Data[1]..Data[n]
on ErrorAck on ErrorAck
Data[2] Data[3]..Data[n]
0x01 FBlockID not available -- No Info
0x02 InstID not available -- No Info
0x03 FktID not available -- No Info
0x04 OPType not available Return OPType Invalid OPType
0x05 Invalid length -- No Info
0x06 Parameter wrong / out of range Return Parameter | Number of Parameter (Byte
One or more of the parameters were wrong, i.e. not containing 1,2...). Value of
within the boundaries specified for the function. first incorrect parameter
only (optional).
Example: Function Temp shall be set to 200, although Interpretation will be
maximum value is 80. stopped then.
0x07 Parameter not available Return Parameter | Number of Parameter (Byte
One or more of the parameters were within the containing 1,2...). Value of
boundaries specified for the function, but are not first incorrect parameter
available at that time. only (optional).
Interpretation will be
Example: Function SourceHandles is asked for handle stopped then.
0x03, which is not in use in the device at that time.
0x08 Reserved. Usage deprecated -- No Info
0x09 Reserved. Usage deprecated - No Info
0x0A Secondary Node Return Address Address of that node which
of Primary is responsible for the
secondary node sending
the error
0x0B Device Malfunction - No Info
0x0C Segmentation Error
After this error code, the following Errorinfo 0x01 up to | 0x01 First segment missing
0x07 can be sent. 0x02 Target device does not
provide enough buffers to
handle a message of this
size
0x03 Unexpected segment
number
0x04 Too many unfinished
segmentation messages
pending.
0x05 Timeout while waiting for
next segment
0x06 Device not capable to
handle segmented
messages
0x07 Segmented message has
not been finished before the
arrival of another message
sent by the same node
0x08 Reserved, must not be

used

Table 2-5: Error codes and additional information (part 1)

Specification Document

MOST Specification 05/2005

© Copyright 1999 - 2005 MOST Cooperation

Page 45

MOST® MOST

Specification CODPERATION
ErrorCode ErrorCode Description Errorinfo Errorinfo Description
Data[0] Data[1]..Data[n]
on ErrorAck on ErrorAck
Data[2] Data[3]..Data[n]
0x20 Function specific

After this error code, any function specific Errorinfo can | 0x01 Buffer overflow
be sent. Some, with general character, are suggested | 0x02 List overflow
here. 0x03 Element overflow
0x04 Value not available
0x40 Busy -- No Info
Function is available, but is busy
0x41 Not available -- No Info

Function is implemented in principle, but is not available
at the moment

0x42 Processing Error -- No Info
0x43 Method Aborted - No Info
This error code can be used to indicate, that a method
has been aborted by the Abort / AbortAck OPTypes
0xFO...0xFE Supplier specific Optional Supplier specific Errorinfo.
After this error code, any supplier specific Errorinfo can
be sent.

Table 2-6: Error codes and additional information (part 2)

Please note:

The error messages described here, mainly serve the purpose of debugging. They should be
handled in a controller only, if the system’s performance requires it. Otherwise error
processing should be omitted, and the devices should be designed as failure tolerant systems.
With respect to that, the slaves also should manage with the existing error messages.
Individual error messages using error code 0x20 should be avoided if possible.

Please note:

For avoiding infinite loops with respect to reporting errors, errors are reported only from Slave
to controller. In addition, no reply of error messages is allowed on reception of broadcast
messages.

CAN systems often define a dedicated error value (e.g., OxFF) for signals to indicate the failure of the
sensor that provides the respective signal. If such a signal is read, function Sensor would report the
error “Not available” (0x41). If the sensor fails, and the function has an implemented notification
mechanism, the error is distributed to the registered controllers.

By OPType Error, different kinds of errors are reported. Incoming messages are scanned for all these
errors:

1) Syntax Error:

A syntax error occurs, if e.g., a function is accessed that does not exist, or if a not implemented
OPType is called. Syntax errors are reported by the ErrorCodes 0x01..0x04. A syntax error will be
reported directly after reception of a faulty command. This also applies to methods, which will not be
started in that case. A slave must report ErrorCode 0x01 with requested FBlockID, which is not
available. ErrorCode 0x02 must be reported if requested InstID is not available.

Example for requesting a non-existing FBlock:

SrcAdr -> TrgAdr:
FBlockID.InstID.FktID.OpType(...)

//if FBlock not available:

TrgAdr -> SrcAdr:
FBlockID.InstID.FktID.Error (errorcode = 0x01)

Specification Document © Copyright 1999 - 2005 MOST Cooperation
Page 46 MOST Specification 05/2005

MOST® MOST

Specification COOPERATION

2) Application Error — Parameter Error:

The specified length does not match the actual length of the data field. There have been not enough,
too many parameters, or one parameter is out of range. Parameter errors are reported by the
ErrorCodes 0x05 and 0x06. Messages are only accepted when being completely correct. This means
especially, that the length of the parameter area must be correct. The only exception is the handling
of arrays that are too short (refer to section 2.3.11.2 on page 89).

3) Application Error — Temporarily not Available:
In some cases it may happen, that the message is correct, but the execution is not possible at the
moment. The following distinction of cases must be performed:

e It may be that both methods and properties are implemented, but cannot be executed due to
operation status. An example for a method would be SMSSend of the telephone, which cannot be
executed if the bus is not available. In case of being called anyhow, it would report an OPType
error at error code 0x41 “not available”. In such a case, the application can supervise the status of
the telephone and may repeat the sending of the SMS as soon as the network is available again.

e A method can be available, but may be busy at the moment. So it would be possible, that method
SMSSend of the telephone is busy in sending another SMS. In that case an error code 0x40
“busy” would be reported. Here, the application may perform retries. This case can only occur in
connection with methods.

e A property represents a memory area, which is written by Set, or read by Get. According to
definition this memory area cannot be “busy”. It is solely possible that a value is within the valid
range, but is not selectable at the moment. An example can be property DeckStatus of the CD
drive, which cannot be set to “Play” if there is no CD loaded. This would generate an error code
0x07 “parameter not available”.

4) Application Error — General Execution Error:
Especially when using methods, execution errors may occur. In general, such an error (unspecific;
Command was correct, but execution failed) may be reported by error code 0x42 “processing error”.

5) Application Error — Specific Execution Error:

Besides the already listed errors, a MOST application may report specific errors during execution by
using OPType Error as well. Here, error code 0x20 “function specific” is used. Some possible errors
are predefined for that case as well.

The examination and processing of errors is done in the logical and temporary sequence as described
above and in Figure 2-15 on page 49.

Specification Document © Copyright 1999 - 2005 MOST Cooperation
MOST Specification 05/2005 Page 47

MOST® MOST

Specification COOPERATION

6) Application Error — Error Secondary Node:

Detailed information about Secondary Nodes is to be found in section 3.10 on page 200. In case a
secondary node receives any control message, the requested FBlock replies with an Error ,secondary
node* (ErrorCode=0x0A). The reply contains the address of the primary node (=Errorinfo), which is
responsible for that secondary node. A secondary node must report ErrorCode Ox0A with requested
FBlocklID, InstID and FktID, which are not available.

Example for requesting a secondary node:

SrcAdr -> TrgAdr:

FBlockID.InstID.FktID.OpType(...)

//if TrgAdr is secondary node

TrgAdr -> SrcAdr:

FBlockID.InstID.FktID.Error (errorcode = 0xOA, errorinfo =)

7) Application Error — Device Malfunction:
This error indicates device malfunction and provides to distinguish between a generally broken device,
and a temporarily being unavailable of a Device.

8) Application Error — Segmentation Error:

A MOST System provides the option of transporting messages that exceed the length limitations given
by the control channel of the MOST bus (17 Bytes). This is done by dividing the message up into
several segments. Each of the segments is then transported as one control channel telegram to the
receiver. In order to make sure that the data can be reassembled safely on the receiver's side, each
telegram carries the appropriate additional information in its protocol header (TellD, Segment counter).

Errors during reassembling the original message in the receiver can be caused e.g., by missing
segments, wrong order of arrival or exceeding the timeout between two segments. In case of such an
error, the parts of the message that have already been received are discarded. In addition, the
application within the receiver is notified of the error by the Network Service.

The segmentation error notifies the sender about the failure of the segmented transfer. Therefore, the
sender’s application may react in appropriate way, e.g., by retrying to send the same message again.
The reaction depends on the respective problem that caused the error.

Segmentation Error shall be sent back to a controller that failed to send a segmented message to a
Slave. Error messages can only be directed from the Slave to the controller, to avoid infinite loops of
error messages. So a failure in sending a segmented message from the Slave to the controller will not
be notified to the Slave. In this case, it is the responsibility of the controller application to take
appropriate measures, as soon as it is notified about the error by the callback function mentioned
above.

Since the segment containing the sender handle in case of an Ack method may be missing,
Segmentation Error is never sent as an ErrorAck message.

Specification Document © Copyright 1999 - 2005 MOST Cooperation
Page 48 MOST Specification 05/2005

MOST®

Specification

MOST

COOPERATION

9) Application Error — Method Aborted:
This error is used in case of abortion of methods by OPType Abort or AbortAck. A MOST device
called "A" starts a method in Device "B". Due to some exceptional events, a third Device "C" aborts
the method running in Device “B”. In that case, Device “B” reports error "Method Aborted" to both the
Device that started the method and to the Device that aborted it since they are both currently involved
in the process. No other controllers need to know about this.

Network Service

MOST Application

Receive application message

Secondary
node?

Send Error OPType Error
ErrorCode 0x0A

Segmentation
error?

Send Error OPType Error
ErrorCode 0x0C

Syntax error?
(Addressing,
OPType)

yes

Send Error OPType Error
ErrorCodes 0x01..0x04

Parameter error?
(Length, number,
range)

Send Error OPType Error
ErrorCodes 0x05, 0x06

Temporarily not
available?

Send Error OPType Error
ErrorCodes 0x07, 0x40, 0x41

Start execution

General
execution error?

yes

Send Error OPType Error
ErrorCode 0x42

Specific
execution error?

yes

Send Error OPType Error
ErrorCode 0x20

(End)

Figure 2-15: Processing of messages including error check on different layers

Specification Document

© Copyright 1999 - 2005 MOST Cooperation

MOST Specification 05/2005

Page 49

MOST® MOST

Specification COOPERATION

Of course there exist errors on application level that do not appear in the MOST syntax (i.e. reported
by OPType Error). An example would be the processing of errors within a data transfer in TCP/IP.
From the point of view of the MOST system, such a data transport is only the transport of data packets
to a receiving function. The contents of the packets and the fact whether that data contains errors is
interpreted on application level only. Higher levels of error management and individual error
messages are to be specified individually.

2.3.2.5.2 Start, Error

By using Start, a controller triggers a method. This approach is useful only for Methods that do not
return results.

Controller FBlock (Slave) Controller FBlock (Slave)
FktlD.Start FktlD.Start
-

»
Lt Lt

Syntax-/ application error: FktID.Error

<

End of procedure

Figure 2-16: Sequences when using Start with and without error

Please Note:

A method started by "Start" must be called only one time (no multiple instances are allowed).
In case a method that was started by "Start" is currently running, and a second controller tries
to start the same method again, the method has to reply an error "Busy"”. The already running
method is not affected by this new incoming request. For running several instances of the
same method, StartAck and ResultAck must be used.

2.3.2.5.3 StartResult, Result, Processing, Error

In opposite of triggering a method by using Start, the controller requires feedback when it uses
StartResult. It then expects reports about the currently running procedure (with Processing), as well
as about the Result (Result or error). If a method does not return a result by parameters, it returns
Result() as a signal of a successful processing.

If there are syntax or parameter errors during the calling of a method, there will be a reply using Error.
The method will not be started.

If a method that was started can generate a result within terocessingnerauit1 after reception of StartResult, it
returns the result by using “Result(<Parameter>)" as soon as it is available. There will be no reply
“Processing” in that case. The same applies to application errors.

Specification Document © Copyright 1999 - 2005 MOST Cooperation
Page 50 MOST Specification 05/2005

MOST® MOST

Specification COOPERATION

If a method cannot generate a result within tprocessingpefaurtt after having received StartResult and if there
is no application error, it replies after that time by using “Processing”. After that it starts the timer
tprocessingDefauite- 1His timer works in the same way as tprocessingbefauitt- 1hat means that in case of
terminating the method within tprocessingpetauire, @ reply “Result(<Parameter>)” will be sent. Otherwise
“Processing” will be reported when the timer expires. Upon sending processing, the timer is restarted.
The controller evaluates the first reply by using a timer interval of twairorProcessingt (COMpensation of
eventual delays). In case that there is no reply within this time (Neither Result, nor Error, nor
Processing), it assumes an error. After receiving the first processing, it uses a timer with interval
twaitForProcessing2 fOr the following receptions.

System Integrators may change the default timeout value (tprocessingperauit1) for acknowledging the start
of a method. This is to be done individually for the respective function, within the Fblock Specification.

There is also a possibility to define each method in the FBlock Specification with two timing values:
1. Initial timeout between StartResult and Processing
2. A second timeout between subsequent processing messages.

All changes must be documented in the related FBlock Specification and Dynamic Specification.

Specification Document © Copyright 1999 - 2005 MOST Cooperation
MOST Specification 05/2005 Page 51

MOST® MOST
Specification = 1

COOPERATION

StartResult Received

Error? Yes
Syntax, Appl — Parameter, Send Error
Appl — not available?
Start Method
Start Timer $rocessingefautt 1
Start Timer brocessngefaull 2
2
Error.l —— Send Error —
Processing
Method Ready? >—'e5 | o Send Result B
) (<Parameter>)
) Yes
Send Processing End
No

Figure 2-17: Flow for handling communication of methods (slave’s side)

Specification Document © Copyright 1999 - 2005 MOST Cooperation
Page 52

MOST Specification 05/2005

MOST® MOST

Specification COOPERATION

StartResult Sent

'

Start Timer tvaitForProcessing 1

-

Error
Received?

—————P Set Error Condition

Start Timer tvaitrorProcessing 2

Result

Received? Set Success Condition

Yes Processing

Received?

Set Error Condition ~ t——————]

No End

Yes

Figure 2-18: Flow for handling communication of methods (controller’s side)

Specification Document © Copyright 1999 - 2005 MOST Cooperation
MOST Specification 05/2005 Page 53

MOST® MOST

Specification COOPERATION

2.3.2.5.4 StartAck, StartResultAck, ProcessingAck, ResultAck, ErrorAck

The behavior is equal to that of Start, StartResult, Processing, Result and Error (refer to section
2.3.2.5.3 on page 50). The only difference is, that the first parameter transports the SenderHandle
(refer to section 2.3.6.2 on page 71).

2.3.2.5.5 Get, Status, Error

By using OPType Get, a controller asks for the status of a property. In case of a request by using Get,
a reply using Status will be generated, if the syntax check has shown no errors. Otherwise Error will
be returned. A property shall reply on a request within tprpery. If the controller does not receive any
reply within twaitrorroperty after having sent Get, an error can be assumed. It is not critical, if the
controller reacts more tolerant and waits for a longer time. Nevertheless, an interruption of the waiting
process is a must.

2.3.2.5.6 Set, Status, Error

By using Set, the content of a Property is changed. Set behaves equal to Start. This means that the
controller does not expect any reply (except error reports). If the syntax check is ok, the command
can be executed.

The changed status of the property will be reported to all controllers that are registered for this
function. This is done via Notification. If the triggering Controller is registered, it will receive a status
report indirectly. This way is recommended, e.g., if the controller is registered in the Notification
Matrix. In addition to that it may be that the changing of a property, by a controller from outside,
generates the changing of the status of several other properties by some internal mechanisms.

Therefore the controlling of properties by using Set is the preferred mechanisms for Controllers that
are registered in the Notification Matrix of a controlled function block.

2.3.2.5.7 SetGet, Status, Error
SetGet is the preferred way of controlling function blocks, for Controllers:

e that control a property only in rare cases
e which are not registered in the Notification Matrix

SetGet is a combination of Set and Get, which means that the Controller (in case of a correct syntax)
automatically gets the changed status in return. This is independent of the Notification Matrix.

In case of a request by using SetGet, a reply using Status is generated, if the syntax check has shown
no errors. Otherwise Error will be returned. A property shall reply on a request within tprgperny. If the
controller does not receive any reply within twairoreroperty after having sent SetGet, an error can be
assumed. It is not critical, if the controller reacts more tolerant and waits for a longer time.
Nevertheless, an interruption of the waiting process is a must.

Specification Document © Copyright 1999 - 2005 MOST Cooperation
Page 54 MOST Specification 05/2005

MOST® MOST

Specification COOPERATION

2.3.2.5.8 Getinterface, Interface, Error

These OPTypes can be compared with Get, Status and Error (refer to section 2.3.2.5.5). Instead of
the status, the Function Interface will be requested.

2.3.2.5.9 Increment and Decrement, Status, Error

Increment and Decrement provide a relative changing of a variable in opposite to the absolute
changing by using Set. When using Increment or Decrement, the new status will be reported to the
triggering Controller as well as to the Controllers registered in the Notification Matrix. This is similar to
SetGet. In case of a Controller requesting Increment or Decrement although the respective maximum
or minimum is reached, no error will be reported. In fact the (old) new value will be reported. This
answer is directed to the triggering controller only. A reporting to the controllers registered in the
Notification Matrix is not required, since the value actually did not change.

2.3.2.5.10 Abort, Error

This OPType is available for methods only. When used, Abort terminates the execution of a method.
The message abortion is confirmed through an Error(Aborted) message. Abort must not have any
parameters. Please note, that methods in general should be aborted only by that application, which
has started the method. After the method has been aborted, information about this is sent out. Please
see 9) Application Error — Method Aborted: on page 49 for more information.

2.3.2.5.11 AbortAck, ErrorAck

This OPType is available for methods only. When used, AbortAck terminates the execution of a
method. The message abortion is confirmed through an Error(Aborted) message. In opposite to
“Abort”, AbortAck transports additional “routing” information (SenderHandle, as described in section
2.3.6.2 on page 71). AbortAck must not have any parameters except SenderHandle. Please note, that
methods in general should be aborted only by that application, which has started the method. After the
method has been aborted, information about this is sent out. Please see 9) Application Error — Method
Aborted: on page 49 for more information.

Specification Document © Copyright 1999 - 2005 MOST Cooperation
MOST Specification 05/2005 Page 55

MOST® MOST

Specification COOPERATION

2.3.2.6 Length

Length specifies the length of the data field in Bytes. It is encoded in 16 Bits.

Length = 0x0000 Data field of length O
Length = 0x0001 Data field of length 1 Byte.
Length = OxFFFF Data field of length 65535 Byte.

Functions that need to transport voluminous application protocols communicate via MOST High
Protocol and the packet data transfer service. These functions will be marked in the FBlock
Specification.

Please note:
Length is not transmitted directly via MOST, but is reconstructed from the number of received
telegrams and the TelLen at the receiver’s side.

2.3.2.7 Data and Basic Data Types

In principle, the data field of a message in the application layer (also referred to as Application
message) may have any length up to 65535 Bytes. In a telegram on the control channel of the MOST
bus, the maximum length is 12 Bytes. So longer protocols must be segmented, i.e., be sent divided
up in several telegrams. It should be kept in mind that even on the application level, the data fields of
a protocol should exceed 12 Bytes only in exceptional cases.

Within a data field, none, one, or multiple parameters in any combination of the following data types
can be transported. They are transported MSB first. The sign is encoded in the most significant bit
and 2's complement coding is used for signed values. There are the following basic data types:

e Boolean e Unsigned Byte e Unsigned Word

e BitField e Signed Byte e Signed Word

e Unsigned Long e Enum e Stream

e Signed Long e String e Classified Stream

e Short Stream

Specification Document © Copyright 1999 - 2005 MOST Cooperation
Page 56 MOST Specification 05/2005

MOST® MOST

Specification COOPERATION

Parameters are transmitted in a way that can be displayed directly. Using only the data types
mentioned above, no floating point format would be possible. The missing information about the
location of the decimal point is added via an exponent of type signed Byte. The value to be displayed
must be transported in the following way:

value to be displayed = transmitted value * 105"

Example 1:
transmitted value: 1073 (word)
exponent: -1
step: 1
unit: MHz

value to be displayed: 107.3 (MHz) (can be changed in steps of 100 kHz)

In case of an Increment operation with NSteps = 5, the current frequency would be incremented from
107.3 MHz to 107.8 MHz.

Example 2:
transmitted value: 1073 (word)
exponent: +5
step: 1
unit: Hz

value to be displayed: 107,300,000 (Hz) (can be changed in steps of 100 000 Hz)

In case of an Increment operation with NSteps = 5, the current frequency would be incremented from
107,300,000 Hz to 107,800,000 Hz.

Example 3:
transmitted value: 1000 (word)
exponent: -3
step: 10
unit: m

value to be displayed: 1.000 (m) (can be changed in steps of 10 mm)

In case of an Increment operation with NSteps = 5, the current length would be incremented from
1.000 m to 1.050 m.

The exponent can be already known through the receiver of the parameter (controller), or it can be
requested through the sender (function) of the value (refer to section 2.3.11 on page 77). It is not
transported together with the parameter.

Specification Document © Copyright 1999 - 2005 MOST Cooperation
MOST Specification 05/2005 Page 57

MOST® MOST

Specification COOPERATION

2.3.2.7.1 Boolean

Definition of Type Comments

1 Byte Only one bit can be used in each Byte.

2.3.2.7.2 BitField

Definition of Type Comments

Size Byte = (Mask.Data)

Size: - (Total Size of the BitField): 1, 2, or 4 Bytes
Data: Y2 Size Byte (Data Content Area)

Mask: Y2 Size Byte (Masking Area):

"Mask" is a masking bit field of the same size as the Data Content
Area "Data". It indicates to which bits in the Data Content Area of the
BitField an operation shall be applied. The LSB of "Mask" masks the
LSB of the Data Content:

Bit k (Mask) =1 -> apply Operation to Bit k (Data)
Bit k (Mask) =0 -> do not apply operation to Bit k (Data)

Example:

State: MyBitField.Status (XXXX XXXX, 1010 1001)
Operation: MyBitField. Set (0000 1000, 1010 0111)
NewState: MyBitField.Status (XXXX XXXX, 1010 0001)

“X” means “don’t care” in this example. These bits should be set to zero by the sender of the Status
message. However, their content must be ignored in the receiver of the Status message.

2.3.2.7.3 Enum

Definition of Type Comments

1 Byte -

2.3.2.7.4 Unsigned Byte

Definition of Type Comments
1 Byte -
Specification Document © Copyright 1999 - 2005 MOST Cooperation

Page 58 MOST Specification 05/2005

MOST® MOST

Specification COOPERATION

2.3.2.7.5 Signed Byte

Definition of Type Comments

1 Byte -

2.3.2.7.6 Unsigned Word

Definition of Type Comments

2 Byte -

2.3.2.7.7 Signed Word

Definition of Type Comments

2 Byte -

2.3.2.7.8 Unsigned Long

Definition of Type Comments

4 Byte -

2.3.2.7.9 Signed Long

Definition of Type Comments
4 Byte -
Specification Document © Copyright 1999 - 2005 MOST Cooperation

MOST Specification 05/2005 Page 59

MOST®

Specification

2.3.2.7.10 String

Definition of Type

Comments

Variable length = (Identifier.Content. Terminator)

Please note:

In general, only “MSB first, High Byte first” notation must be used for strings. Every string

starts with an Identifier and is Null terminated.

MOST

Identifier: 1 Byte
Code String type ASCIl compatible
0x00 Unicode, UTF16 No
0x01 ISO 8859/15 8bit Yes
0x02 Unicode, UTF8 No
0x03 RDS No
0x04 DAB Charset 0001 | No
0x05 DAB Charset 0010 | No
0x06 DAB Charset 0011 | Yes
0x06 - OxBF | Reserved
0xCO — OxFF | Proprietary
Content: Characters
Terminator: 1 Character Null character. Number of zeros. Depends on encoding.

For calculating length, only the number of characters is relevant. Length explicitly excludes the
Identifier and the terminating character(s). Strings that are using the RDS character set may contain
codes for switching the code pages. This can produce strings, which need more Bytes in memory
than the number of characters they contain.

The encoding of an "empty" string depends on the used code:

Code "Empty" String Comment
UNICODE, UTF16 0x00,0x00,0x00 -
ISO 8859/15 8 bit 0x01,0x00 -
Unicode, UTF8 0x02,0x00 -
RDS 0x03,0x00 -

Since all strings are null terminated, character sets that use a null character are not allowed.

2.3.2.7.11 Stream

Definition of Type Comments

Any Data -

Specification Document
Page 60

© Copyright 1999 - 2005 MOST Cooperation
MOST Specification 05/2005

MOST®

Specification

MOST

COOPERATION

2.3.2.7.12 Classified Stream

Definition of Type Comments

Variable length

=(Length.MediaType.Content)

Classified Strea

m acts as a container for different objects.

Length: 2 Bytes Length of the stream.

MediaType: Null terminated ASCII string (no coding identifier) containing the data typing of the
object that is transported in the Classified Stream. The format used for this is the
same as for HTTP/1.1.

MediaType = type “/” subtype *(“;” parameter)

The MediaType’s values type, subtype and parameter are specified by the Internet
Assigned Number Authority IANA. If a MediaType is not available “application/octet-
stream” shall be assumed when MediaType is an empty string.

Information about HTTP/1.1 can be found in:

RFC 2616 - Hypertext Transfer Protocol -- HTTP/1.1, R. Fielding, J. Gettys, J. Mogul,
H. Frystyk, L. Masinter, P. Leach, T. Berners-Lee. June 1999. (Obsoletes RFC 2068).

2.3.2.7.13 Short Stream

Definition of Type Comments

Variable length =(Length.Content)

Length: 1 Byte Length of the stream (max 255 Bytes)

Specification Document © Copyright 1999 - 2005 MOST Cooperation

MOST Specification 05/2005 Page 61

MOST® MOST

Specification COOPERATION

2.3.3 Function Formats in Documentation

The protocols have different DevicelDs, depending on the protocol being received or transmitted. In
documentation that must be human readable, the following general description must be used, which
covers both cases:

SrcAdr -> TrgAdr: FBlockID.InstID.FktID.OPType.Length (Parameter)

SrcAdr and TrgAdr are the physical MOST addresses of the sending and the receiving device,
respectively. On the sender’s side, it is identical with the TrgAdr, and on the receiver’'s side with the
SrcAdr (please refer to the example in section 2.3.5 on page 63). In most cases, only one instance of
the function block is available in the system, and InstlID can be omitted. Descriptions can also be
simplified by omitting the Length.

SrcAdr -> TrgAdr : FBlockID.FktID.OPType (Parameter)
Example:

Choosing track of the CD changer:

HMI -> CDC : AudioDiskPlayer.Track.Set(5)
CDC -> HMI : AudioDiskPlayer.Track.Status(5)

2.3.4 Protocol Catalogs

The telegrams are included in a catalog and are grouped by functions (Function catalog). It is a good
approach to implement this catalog in a database, so that a printable version can be produced.

Specification Document © Copyright 1999 - 2005 MOST Cooperation
Page 62 MOST Specification 05/2005

MOST® MOST

Specification COOPERATION

2.3.5 Application Functions on MOST Network (Introduction)

The controlling mechanisms described in this document are generally independent of the kind of bus
used. Protocols on the application level are described in a universal way. They are transported
virtually from one application to the other. In reality they are transmitted with the help of a bus system,
here the MOST network, which is described in detail below.

Virtual communication protocols
Functional addressing

Application e ——— e ——————— > Application
Real Communication Real Communication
Network Service Network Service

Real communication

MOST telegrams
MOST Network Physical addressing MOST Network
Interface g - Interface
Controller Controller

Figure 2-19: Virtual communication between two devices on application layer and real comm. via network

All application protocols are finally transferred via the control channel of the MOST Network. From the
application’s point of view, all protocols are passed on to the Network Service. Depending on the
length, an application protocol is sent with a single transfer if it fits into one MOST telegram, otherwise
via segmented transfer.

In a MOST Network, nodes, or devices, are addressed. In order to transport a protocol to a function
block, the MOST telegrams are provided with the address of the device that contains the function
block.

Here, the entire data flow of an interaction between two devices via the network layer is described.
One device controls the functions of the other. The figure below shows the properties of a function
block with the FBlocklD CD and the InstID 1. The function block is found in device CD Player with the
physical MOST address CDC.

Specification Document © Copyright 1999 - 2005 MOST Cooperation
MOST Specification 05/2005 Page 63

MOST® MOST

Specification COOPERATION

CcDC

CD.1

TRACK | 10 |

‘TIME \ 01:23 \

\STATUS\ PLAY \

Figure 2-20: Device with MOST address CDC, a function block CD Player with FBlockID CD, and its functions

For example, another track can be chosen by reception of the following protocol:

CD.1l.Track.Set(10)

This protocol is sent by a device with the physical MOST address HMI. Therefore it will be passed on
to the Network Service in the following form:

FFFF.CD.1l.Track.Set(10)

The first part is a special DevicelD, which means that the physical address of the receiver is not known
on the application level. The Network Service will complement the address. The result is:

CDC.CD.1.Track.Set(10)
For transmission this is complemented by the sender’s physical address:

HMI.CDC.CD.1l.Track.Set(10)

Since the receiving device knows its own physical address, this address does not need to be passed
on to the application level. The received protocol therefore looks like:

HMI.CD.l1l.Track.Set(10)

If the function wants to report its new status, it builds the following protocol:

HMI.CD.l1l.Track.Status(10)

Based on this, the Network Service builds the following telegram:

CDC.HMI.CD.1l.Track.Status(10)

Specification Document © Copyright 1999 - 2005 MOST Cooperation
Page 64 MOST Specification 05/2005

MOST® MOST

Specification COOPERATION

In the HMI the receiver’s address is removed and the protocol is passed to the application:

CDC.CD.1.Track.Status (10)

The general data flow via the different layers in the two devices is displayed in the following figure:

FBlockID .InstID.FktID.OPType(Parameters)
Application pPoH=—————————— == Application

D.InstID.FktID.OPType(Parameters)

DevicelD1.FBlocklID.InstID.FktID.OPTyp
Network Service

Network Service

lockID.InstID.FktID.OPType(Parameters)

DevicelD1.FBlockiD.InstID.FktID.OPTyp|

MOST Network
Interface
Controller

MOST Network DevicelD1.DevicelD2.FBlockiD. InstiD.FktID. OPType (Parameters)

Interface
Controller

Figure 2-21: Communication between two devices via the different layers

Specification Document © Copyright 1999 - 2005 MOST Cooperation
MOST Spegification 05/2005 Page 65

MOST® MOST

Specification COOPERATION

2.3.6 Controller / Slave Communication

For communication between Controllers and Slaves, properties and methods must be differentiated.

2.3.6.1 Communication with Properties Using Shadows

Below, communication between a controlling and a controlled device is explained for Properties by an
example:

e Controlling device (Controller):
Contains a function block controlling another function block.

e Controlled device (Slave):
Contains only controlled function blocks (for demonstration purpose).

The properties of a device should describe the current operation status completely at any time. The
figure below shows the properties of a function block CD changer with FBlocklD CD and the InstID 1
in the device with the MOST address CDC.

CDC

CDA

TRACK n

‘TIME \ 01:23 \

| STATUS | PLAY |

Figure 2-22: Example for a Slave device
Operation status of the player is determined by the properties Disk (number of loaded CD), Track,

Time, and Status (Play, Stop, Forward, Rewind and Eject). By changing these properties the player
can be controlled by another device.

For example, another track can be chosen by sending the following protocol:
HMI->CDC: CD.1l.Track.Set(10)

If this operation is successful, the new state of the CD player is confirmed by the following protocol:
CDC->HMI: CD.l.Track.Status(10)

By sending this protocol, the player can be stopped:

HMI->CDC: CD.1l.Status.Set (Stop)

Specification Document © Copyright 1999 - 2005 MOST Cooperation
Page 66 MOST Specification 05/2005

MOST® MOST

Specification COOPERATION

Also in this case, the new state of property Status can be transmitted via a protocol:

CDC->HMI: CD.1l.Status.Status(Stop)

These status messages are sent by the CD player, even in a case where a property changes itself,
e.g., when the player changes to the next track during play mode (on the condition that another device
is registered in the notification matrix of function block CD).

The MOST device address of the CD changer (represented by the abbreviation CDC) together with
FBlocklD and the InstID describe the property to be changed. To make sure that the protocols for
controlling a device find their way through the system, the property description must be unique in the
entire system.

If there are multiple CD players in the system, they get different InstIDs, and in addition to that,
different MOST addresses. Based on that, two players can be controlled by a HMI in the following
way:

???->CDC1l: CD.1l.STATUS.SET (STOP)
???->CDC2: CD.2.STATUS.SET (STOP)

By this, two CD function blocks can be addressed unambiguously, even if they are located within one
physical device with one MOST address. This also guarantees that status reports can be assigned
unambiguously:

CDC ->??7?: CD.1l.STATUS.STATUS (STOP) Status of CD in CDC
CDC1->???: CD.1l.STATUS.STATUS (STOP) Status of CD in CDC1
CDC2->???: CD.2.STATUS.STATUS (STOP) Status of CD in CDC2
CDC->??7?: CD.1.STATUS.STATUS (STOP) Status of 1lst Player in CDC
CDC->??7?: CD.2.STATUS.STATUS (STOP) Status of 2nd Player in CDC

The controlling device (controller) contains the Shadows of the functions it controls. The Shadow of a
function in the control device represents an image of the property of the Slave device. That means, for
each controlled property of the Slave device, the control device contains a respective variable. For the
controller, the function seems to reside in its own memory area. This is shown in the figure below:

HMI

CcDC
CD1 HMI->CDC: CD.1.TRACK.SET (TRACK+1) CD.1

| Sriiututtaiid b it |
I
[Sievingiiedig b il
[yack] @ | TRack | o3 |

i TIME i 01:23 | ‘TIME ‘ 01:23 ‘

I STATUS { PLAY ! | STATUS | PLAY |

CDC->HMI: CD.1.TRACK.STATUS(03)

Figure 2-23: Virtual illustration of the controlled properties in the control device

Specification Document © Copyright 1999 - 2005 MOST Cooperation
MOST Specification 05/2005 Page 67

MOST® MOST

Specification COOPERATION

The HMI shown in Figure 2-23 has an image of all properties of CDC (Slave device) represented by
the variables Disc, Track, Time and Status. These variables are required to store the display values,
and can be used for control purposes too. The example shows the flow of communication when using
the “Next track” button.

On a click onto the button, the HMI takes the contents of its local variable Track, increments it by one,
and sends the protocol CD.1.Track.Set(Track+1) to device CDC. After the player has changed track,
it replies by sending protocol CD.1.Track.Status(3). Addressing of the response is equal to the
addressing of the command, except the address, since the answer is sent to a (virtual) identical
function block. Variable Track reacts only on that protocol and stores the new value. The change of
variable Track causes the HMI to update its display.

As shown in the figure below, there is one protocol assigned to each variable unambiguously. Every
variable in HMI “reacts” only on the assigned protocol, sent from the respective device.

HMI

3|66 |7 [0 o [0 Oasis SilkeserSyslons Thin

cDe
CD.1 CD.A
CDC->?:CD.1.DISK.STATUS
DISK IL 6
TRACK
CDC->?:CD.1.TRACK.STATUS
1
TRACK 1 03 ‘TIME \ 01:23 \
CDC->HMI: CD.1.TRACK.STATUS (03)
CDC->?:CD.1.TIME.STATUS
TIME I 01:23 | STATUS | PLAY |

[
L

CDC->?:CD.1.STATUS.STATUS

STATUS | PLAY
-

Figure 2-24: Unambiguous assignment between protocol and variable

The figure below shows the advantage of this approach when controlling multiple devices. The HMI
has an image of the controlled CD player, as well as an image of the tuner. Even during play operation
of the CD player, the tuner sends status changes to the HMI. In CD operation mode, this information is
not shown on the display, but is stored in the respective variables. This means that the current
information about the tuner is available immediately if the operation mode is changed from CD to
Tuner, with no extra polling needed.

Specification Document © Copyright 1999 - 2005 MOST Cooperation
Page 68 MOST Specification 05/2005

MOST®

Specification

MOST

COOPERATION

HMI

cD.1

[oossss== e
1DISK 18
ITRACK | 03 |
ITIME ! 01:23

I STATUS | PLAY !

TUNER1

r]

{ FREQUENCY } 98,4 |

i BAND | FM
o

1]

'STEREO | ON i |

HMI->CDC: CD.1.TRACK.SET (TRACK+1)

CDC->HMI: CD.1.TRACK.STATUS (03)

RADIO->HMI :
TUNER. 1.STEREO. STATUS (ON)

A similar case could be imagined, if several identical CD players are available in the network.
Operation mode of the HMI could be changeable, for example, between CD1 and CD2. The display

Figure 2-25: Controlling multiple devices

CcDC

¢ | TRACK

CD.1

‘TIME \ 01:23 \

| STATUS | PLAY |

RADIO

TUNER.1

| FREQUENCY | 984 |

\ BAND \ FM \

|STEREO | ON |

would show only the status of the currently selected player, and the keyboard would be switched, too.

As shown in the graphic below, such a HMI would contain two sets of variables (shadows), one for
each CD player. The variables for CD.1 react only upon protocols of CD.1, while the variables for

CD.2 react only upon protocols of CD.2. If both of the function blocks are located in one device,

handling would be identical.

Both sets of variables are updated, even if only one set is displayed. When switching between the

players, all values are available immediately.

Specification Document

© Copyright 1999 - 2005 MOST Cooperation

MOST Specification 05/2005

Page 69

MOST® MOST

Specification COOPERATION

HMI

CcDC

CDA1 CDA

CDC->?:CD.1.DISK.STATUS
]
DISK i 6
L
; CDC->?:CD. 1. TRACK.STATUS TRACK -

ITRACK | 03
- -t

CDC->HMI: CD.1.TRACK.STATUS (03) ‘TIME ‘ 01:23 ‘
CDC->?:CD.1.TIME.STATUS
TIME | 01:23 |STATUS | PLAY |
CDC->?:CD.1.STATUS.STATUS
STATUS IL PLAY
cbc
cD.2 cD.2

DISK lL 6

TraAcK | 0|
CDC->?:CD.2.TRACK.STATUS

TRACK i 03 CDC->HMI: CD.2.TRACK.STATUS (03) ‘TIME ‘ 01:23 ‘

CDC->?:CD.2.TIME. STATUS

TIME | 01:23
-

\STATUS\ PLAY \

CDC->?:CD.2.STATUS.STATUS

STATUS 'l PLAY

Figure 2-26: Controlling two identical devices

For the assignment of protocols and variables in the control device, the respective protocols are
defined for each variable. Each variable therefore has a filter function that can be passed only by the
“own” protocol.

This can be done by a table, which contains the protocols consisting of MOST sender address,
FBlocklID, InstlD, and FktID. There can be one pointer assigned to each protocol, pointing to the
respective variable. In addition to that, or as an alternative, function pointers are also allowed. By
this, functions could be called depending on protocols, and controlled by tables.

The concept can also be realized by an object-oriented approach, where variables are realized by
objects with protocol filters and methods for representation. Following this approach, all incoming
protocols are distributed to all objects, but only that object whose filter lets the protocol pass, will react.
Analogously, the incoming protocols are compared to all protocols in the table when using the table
approach.

On more complex control devices, this approach can be optimized by filtering the protocols step by
step. The figure below shows an HMI, which contains Shadows of a CD player and a tuner. These
Shadows are implemented as interface objects. The interface objects are combined in two parent
objects that filter the incoming protocols by sender address and InstID. The interfaces themselves
only need a filter for the FktID.

Specification Document © Copyright 1999 - 2005 MOST Cooperation
Page 70 MOST Specification 05/2005

MOST® MOST

Specification COOPERATION
HMI CDC->HMI: CD.1.TRACK.STATUS (03)
CDC->?: CD.1.???2°?? | cDC
CD

???.DISK.STATUS

CD.1
1
22?2 . TRACK. STATUS]
TRACK
TRACK i 03 227|. TRACK. STATUS (03) -m

227 . TIME.STATUS ‘ TIME ‘ 01:23 ‘
TIME i 01:23
-

\STATUS\ PLAY \

???.STATUS.STATUS

STATUS | PLAY
<L

RADIO->HMI: TUNER.1.FREQUENCY.STATUS (98,4)

RADIO->?: TUNER.1.?2???? |

RADIO
TUNER

‘ TUNERA
222 . FREQUENCY . STATUS 1
FREQUENCY [98,4 i P?7? | FREQUENCY . STATUS (98, 4) ‘ FREQUENCY ‘ 98,4 ‘
222 BAND . STATUS
BAND [Fm | BAND M|
222 . STEREO. STATU ‘STEREO ‘ ON ‘
STEREO ON

Figure 2-27: Hierarchical structure of the protocol filter (command interpreter)

Without object-oriented programming, the stepwise filtering can be implemented by using a message
dispatcher. This dispatcher would forward the protocols to the respective function blocks based on
sender address, FBlockID and InstID. Every function block can then analyze the FktIDs itself, by an
own command interpreter.

Based on the well-structured protocols, further analyzing steps can be inserted if required.

2.3.6.2 Communication with Methods

2.3.6.2.1 Standard Case

In general, communication with properties is equal to communication with methods. This means that a
controller controls a function in a Slave Device and there will be a reply to the Controller Device. An
example:

Controller -> Slave: FBlockID.InstID.StartResult (Data)

Slave -> Controller: FBlockID.InstID.Result (Data)

Slave -> Controller: FBlockID.InstID.Error (ErrorCode, ErrorInfo)

Specification Document © Copyright 1999 - 2005 MOST Cooperation
MOST Specification 05/2005 Page 71

MOST® MOST

Specification COOPERATION

2.3.6.2.2 Special Case Using Routing

In some cases there are methods where the general way of communication is not sufficient. The
philosophy of building Shadows when on handling properties is based on the fact, that every property
has only one single and unique state. This state then is imaged on one or more controllers. This
condition is not valid for methods. So it may happen that a method is processing a request for one
Controller, while it appears to another Controller to be busy. It has many states.

In addition to that, in methods a process is triggered, which has a longer processing time. The
Controller may need to wait for a result. If several tasks within a device accessed one method at the
same time, it must be possible to route the answer back to the respective task.

One example can be the SMS service in a GSM module of the device Telephone. In HMI, three tasks
desired to send an SMS message independently from each other. The message of task 1 was sent,
the one of task 2 was buffered, while the message of task 3 was rejected. The respective status
message must now be assigned, which is not possible using the communication methods described
up to now.

HMI
TASK 1
TELEPHONE
GSM.1 GSM.1
TELEPHONE->HMI :
I? GSM.1.SMSSend.Error (Busy)
TASK 2 f SMS <€ SMSSend
TASK 3

Figure 2-28: Routing answers in case of multiple tasks (in one controller) using one function

To provide routing in such cases, the OPTypes StartResultAck, ProcessingAck, ResultAck, and
ErrorAck are introduced. The behavior of these OPTypes is identical to that of StartResult,
Processing, Result and Error. The only difference is that as first parameter the SenderHandle (data
type unsigned word) is inserted. The SenderHandle is set by the Controller at StartResultAck and
characterizes the sender more in detail (Task, process...). The SenderHandle will not be interpreted by
the Slave, but will be returned in an answer (ProcessingAck, ResultAck or ErrorAck).

Specification Document © Copyright 1999 - 2005 MOST Cooperation
Page 72 MOST Specification 05/2005

MOST® MOST

Specification COOPERATION

The SMS call in Task 1 may look like:

Controller -> Slave: Telephone.l.SMSSend.StartResultAck
(SenderHandlel.SMSData)

After successful transmission, Task 1 gets:

Slave -> Controller: Telephone.l.SMSSend.ResultAck (SenderHandlel)

If Task 3 desires to send in the meantime, it sends:

Controller -> Slave: Telephone.l.SMSSend.StartResultAck (SenderHandle3.SMSData)

And it then gets in return:

Slave -> Controller: Telephone.l.SMSSend.ErrorAck (SenderHandle3.ErrorCode="Busy”)

It must be decided individually, which methods must have a detailed back addressing with OPTypes
StartResultAck, ProcessingAck, ResultAck, and ErrorAck.

Specification Document © Copyright 1999 - 2005 MOST Cooperation
MOST Specification 05/2005 Page 73

MOST® MOST

Specification COOPERATION

2.3.7 Seeking Communication Partner

It may happen that an application has to seek a communication partner, that is, a function block. This
may happen in a self-configuring audio system with four or six active speakers. The audio controller
knows that function blocks with the FBlockID AudioAmplifier must be available, but does not know how
many, or where. Therefore it has to seek, and gets the instance IDs as reply. With the help of the
InstIDs and the number of audio amplifiers, it can configure itself correctly.

To seek a function block, the seeking block sends the following protocol to the NetworkMaster:

control -> ??? : NetworkMaster.CentralRegistry.Get (FBlockID)

The NetworkMaster contains the Central Registry, which represents an image of the physical and
logical system configuration. It answers with a list of all matching entries of the Central Registry with
physical and functional address:

??? -> control : NetworkMaster.CentralRegistry.Status (

Rx/TxLog.FBlockID.InstID,
Rx/TxLog.FBlockID.InstID,...)

Optionally, the InstID can also be specified, to search for a certain function block:

control -> ??7? : NetworkMaster.CentralRegistry.Get (FBlockID.InstID)

If the respective function block does not exist, the NetworkMaster replies with an error and error code
0x07 “Parameter not available”. It returns the number of the parameter (0x01 in this case) and the
value (FBlocklID.InstID in this case).

2.3.8 Requesting Function Block Information from a Device

To obtain information about the function blocks contained by a device, every NetBlock has the
property FBlockIDs (0x000). It will be read in the following way:

control -> ??? : NetBlock.FBlockIDs.Get

and answers with a list of the contained FBlocklDs. The function block that most characterizes the
device (e.g., Tuner in a radio device) is listed first. = The NetBlock and function block
EnhancedTestability do not need to be listed, as they are mandatory function blocks in every device:

??? -> control : NetBlock.FBlockIDs.Status (FBlockIDl.InstID1,
FBlockID2.InstID2...
FBlockIDN.InstIDN)

NetBlock.FBlockIDs
| FBlockID 1] FBlockID 2| FBlockID 3| ...[FBlockID N|

Figure 2-29: Reading the function blocks of a device from NetBlock

Specification Document © Copyright 1999 - 2005 MOST Cooperation
Page 74 MOST Specification 05/2005

MOST® MOST

Specification COOPERATION

2.3.9 Requesting Functions from a Function Block

In an adaptable system it may happen that a controller does not know exactly which functions are
available in a function block (e.g., simple or high-end audio amplifier). Therefore, every function block
has the function FktiDs (0x000). It is read as follows:

control -> ??? : FBlockID.InstID.FktIDs.Get

Within a function block, FktIDs between 0x000 and OxFFF (4096 different FktlDs) can be available.
The FktIDs are assigned as described in 2.3.2 on page 38. This raises the problem of a compact
response, if the functions contained in a function block are requested. It is solved by a mechanism
derived from the run length encoding. A bit field is built where the first bit is set to 1 if FktID 0x000 is
available; the second bit is set to 1 if FktID 0x001 is available, and so on. Such a bit field may look
like:

FktID 000 001 002 003 004 005 006 .. 021 022 023 024 .. AO0 AO1 AO2 AO3 .. FFF
Bitfed 1 14 1 0 0 1 14 0 O O 1 1 0O O 1 1 0 0 0 O

The answer lists only the positions (FktlDs) where the bit state changes, beginning with an initial bit
state of 1.

For the example shown above, the result would be:

??? -> control: FBlockID.InstID.FktIDs.Status (002 004 006 022 024 AO00 A02 0)

The last 0 represents a stuffing nibble.

NetBlock.FBlockIDs
FBlockID 1| FBlockID 2| FBlockID 3‘ ‘ FBlockID N

FBlockID1.FktIDs
[FktlD 1 [FktiD 2 [FktID 3 | ... FktiD N |

Figure 2-30: Requesting the functions contained in an application block

Specification Document © Copyright 1999 - 2005 MOST Cooperation
MOST Specification 05/2005 Page 75

MOST® MOST

Specification COOPERATION

2.3.10 Transmitting the Function Interface

2.3.10.1 Principle

In principle, function interfaces can be transmitted to a controller, or a HMI.

NetBlockFBlockIDs

FBlockiD 1]

FBlockiD 2| FBlockiD 3| .| FBlockiD N

FBlockID1.FktIDs

FktID 1 H FktiD 2 H FktID 3‘ ‘ FktiD N

FktID1.Interface

‘ Type H Min H Max ‘ ‘ Unit

Figure 2-31: Requesting the function interface of a function

The flow for determining all function interfaces of a function block looks like:

control -> slave : FBlockID1l.FktIDl.GetInterface
slave -> control : FBlockID1l.FktIDl.Interface ([Interface Description])
control -> slave : FBlockID1l.FktID2.GetInterface
slave -> control : FBlockID1l.FktID2.Interface ([Interface Description])

control -> slave : FBlockID1l.FktIDN.GetInterface
slave -> control : FBlockID1l.FktIDN.Interface ([Interface Description])

The parameter list “Interface Description” contains information about a function interface.

2.3.10.2 Realization of the Ability to Extract the Function Interface

In the FBlock Specifications, every interface of classified functions is described. By doing this, a
classified definition of application protocols, as well as a uniform description, is possible, which can be
based onto a few classes, which are described in the section 2.3.11.

Specification Document © Copyright 1999 - 2005 MOST Cooperation
Page 76 MOST Specification 05/2005

MOST®

Specification

MOST

COOPERATION

2.3.11 Function Classes

When having a look at function classes, properties and methods must be differentiated. The properties
themselves consist of such with one variable, and of such with multiple variables.

2.3.11.1 Properties with a Single Parameter

Many functions contain only a single parameter. These functions can be divided into classes, which
correspond with the type declaration in programming languages. The class of a property is derived
from the basis data type (Refer to section 2.3.2.7 on page 56) of its variable.

At the moment there are the following function classes for single properties:

Function class | Explanation

Switch Properties of this class contain a variable of type Boolean (on/off; up/down). It
can be set (Set, SetGet) or read (Get, Status).

Number Properties of this class contain a numeric variable (frequency, speed limit,
temperature), which can be read (Get, Status), set absolutely (Set, SetGet) or
changed relatively (Increment, Decrement).

Text Properties of this class have a string variable (Status), e.g., Warning, Hint.

Enumeration Properties of this class contain a variable of type Enum. They provide an
unchangeable number of invariable elements, from which can be chosen
(Set). Examples: Drive status (Stop, Pause, Play, Forward, Rewind), Dolby
(B, C, Off).

BoolField Properties of this class contain a number of bits that should either be used as
flag field, or as controlling bits that are always manipulated together.

BitSet Properties of this class are based on data type BitField. They contain a
number of bits, which can be manipulated individually.

Container Properties of this class contain a variable of type Classified Stream.

Table 2-7: Classes of functions with a single parameter

The function classes (basic classes) with one variable and their resulting protocols are described in
detail below. The following universal parameters are used:

Flags: 8 Bit

Bit 6-7

Bit 4-5 Bit 3 Bit 2 Bit 1 Bit 0

Reserved

Channel Type | Notification | Unicode | Enabled | Visible

By using the Visible bit, the device can influence whether the function is displayed at
the moment or not (default = 1 = visible). It is possible to disable a function
temporarily (like the gray options in PC application’s menus). This is done by setting
the Enabled bit to 0. Bit 2 indicates whether a function uses Unicode or standard
strings (note: Unicode is not ASCIl compatible). The Notification bit shows whether a
function supports notification. This bit is valid only for properties. The Channel Type
bit field consists of two bits. It shows the type of channel that is used when
communicating with the function. Table 2-8 shows the three possible modes.

Specification Document © Copyright 1999 - 2005 MOST Cooperation

MOST Specification 05/2005 Page 77

MOST®

Specification

MOST

COOPERATION

OPType | Property Method Mode 0 | Mode 1 | Mode 2
0 Set Start C A A
1 Get Abort C A C
2 SetGet StartResult C A A
3 Increment C A C
4 Decrement C A C
5 Getlnterface | Getlnterface C C C
6 StartResultAck C A A
7 AbortAck C A C
8 StartAck C A A
9 ErrorAck C A C
A ProcessingAck C A C
B Processing C A A
C Status Result C A A
D ResultAck C A C
E Interface Interface C C C
F Error Error C A C

Table 2-8: The different modes of the bit field Channel Type

The meaning of the characters "C" and "A" in the table is as follows:
C: messages on control channel without using MOST High
A: messages on the asynchronous channel using MOST High

Mode 0:
This is the standard mode where all communication with the function is done via the
control channel.

Mode 1:

All communication is done via the MOST High Protocol on the asynchronous channel.
The only exceptions from this are the OPTypes Getlnterface and Interface which need
to be available on the control channel so that the interface can be received regardless
of if the requesting node is using MOST High or not.

Mode 2:

This is a mixed mode where only the OPTypes that are carrying a lot of data are
accessed over the asynchronous channel via the MOST High Protocol. An exception
is processing which does not contain a lot of data but is sent in the same way as
Result i.e., over the asynchronous channel.

Bit 6 and 7 are reserved for future use.

Specification Document
Page 78

© Copyright 1999 - 2005 MOST Cooperation
MOST Specification 05/2005

MOST®

Specification

MOST

COOPERATION

Class: 8 Bit

OPTypes: 16 Bit

Name:

0x00

0x10
0x11
0x12
0x13
0x14
0x15
0x16
0x17
0x18
0x19
Ox1A
0x1B

OxFF

Unclassified method

Unclassified property

Switch

Number

Text

Enumeration

Array Refer to section 2.3.11.2.2 on page 92.
Record Refer to section 2.3.11.2.1 on page 90.
Dynamic Array Refer to section 2.3.11.2.3 on page 95.
Long Array Refer to section 2.3.11.2.4 on page 97.
BoolField

BitSet

Container

Abort (No further specifications behind this location)

BitField of available OPTypes (1 = OPType available).
LSB represents the least significant OPType "Set", which has code

0x0.

Name of function as null terminated string.

Specification Document

© Copyright 1999 - 2005 MOST Cooperation

MOST Specification 05/2005 Page 79

MOST®

Specification

MOST

COOPERATION

2.3.11.1.1 Function Class Switch

OPType Parameters
Set Boolean
Get
Status Boolean
SetGet Boolean
GetInterface
Interface Flags, Class, OPTypes, Name
Error ErrorCode, Errorinfo
Boolean: 1 Byte 0 for off, 1 for on
Example: RDSONOff in AM/FMTuner1
Function: RDSOnOff e.g., 0x00A
Flags: visible, enabled, 0000 1011 = OxOB
no Unicode, notification
Class: Switch 0x11
OPTypes: Get, SetGet, Status 1101 0000 0010 0110 = 0xDO026
GetInterface, Interface,
Error
Name: RDSOnOff "RDS"

Upload interface:

Tuner -> HMI: AM/FMTuner.l.RDSOnOff.Interface (OB 11 D026 “RDS”)

Setting RDS = OFF:

HMI -> Tuner: AM/FMTuner.l.RDSOnOff.SetGet (00)

Please note:

This is a hypothetical example. It does not necessarily follow the MOST FBlock Specification.

Specification Document
Page 80

© Copyright 1999 - 2005 MOST Cooperation
MOST Specification 05/2005

MOST®

Specification

MOST

COOPERATION

2.3.11.1.2 Function Class Number

OPType Parameters
Set Number

Get

Status Number

SetGet Number

Increment NSteps

Decrement NSteps

Getlnterface

Interface

Flags, Class, OPTypes, Name, Units, DataType, Exponent, Min, Max, Step

Error

ErrorCode, Errorinfo

DataType:

Exponent:

Min:
Max:

Step:

NSteps:

Units:

Uns. Byte

Signed Byte

Uns. Byte

Uns. Byte

Type of variable:

0x00 Unsigned Byte
0x01 Signed Byte
0x02 Unsigned Word
0x03 Signed Word
0x04 Unsigned Long
0x05 Signed Long

Position of decimal point; Value = Number * 105"

Minimum value of variable of type DataType

Maximum value of variable of type DataType

Step width for adjusting type DataType. The following
condition must always be true:

Max = Min + (n * Step)

Number of steps, as defined under "Step width for adjusting".
Default value is 1, value 0 is not allowed.

NSteps has no exponent, but has the same unit

like the Number parameter.

Unit

Specification Document

© Copyright 1999 - 2005 MOST Cooperation

MOST Specification 05/2005 Page 81

MOST®

Specification

MOST

COOPERATION

Unit Encoding Unit Encoding
none 0x00 Speed:
km/h 0x50
Distance: Miles/h 0x51
cm 0x01 m/s 0x52
m 0x02
km 0x03 Temperature:
miles 0x04 °C 0x60
F 0x61
Time:
us (Micro second) 0x10 Volume:
ms (Millisecond) 0x11 dB 0x70
s (Second) 0x12
min (Minute) 0x13 Voltage:
h (Hour) 0x14 mV 0x80
d (day) 0x15 \ 0x81
mon (Month) 0x16
a (Year) 0x17 Current:
mA 0x90
Frequency: A 0x91
1/min 0x20
Hz 0x21 | Angle:
kHz 0x22 Degrees 0xA0
MHz 0x23 Minutes 0xA1
Seconds 0xA2
Volume: 360°/ 2 0xA3
| (Liter) 0x30 360°/ 2° 0xA4
gal (UK) 0x31
gal (US) 0x32 Resolution:
Pixel 0xBO
Consumption:
1/100km 0x40
miles/gal 0x41
km/| 0x42

Table 2-9: Available units

Specification Document

Page 82

© Copyright 1999 - 2005 MOST Cooperation

MOST Specification 05/2005

MOST® MOST

Specification COOPERATION

2.3.11.1.3 Function Class Text

OPType Parameters

Set String

Get

Status String

SetGet String

Getlnterface

Interface Flags, Class, OPTypes, Name, MaxSize

Error ErrorCode, Errorinfo
MaxSize: Uns. Byte Maximum length of string
Specification Document © Copyright 1999 - 2005 MOST Cooperation

MOST Specification 05/2005 Page 83

MOST® MOST

Specification COOPERATION

2.3.11.1.4 Function Class Enumeration

OPType Parameters
Set Pos
Get
Status Pos
SetGet Pos
Increment NSteps
Decrement NSteps
Getlnterface
Interface Flags, Class, OPTypes, Name, Size, Name1, Name2,...
Error ErrorCode, Errorinfo
Size: Uns. Byte Length of enumeration

0 = no element
1 = one element
2 = two elements....

Name x: Null terminated string, representing the name of element x
Pos: Uns. Byte Number of active element or of element to be activated
Please Note:

Increment and Decrement must be interpreted like Predecessor and Successor in common
programming languages.

Specification Document © Copyright 1999 - 2005 MOST Cooperation
Page 84 MOST Specification 05/2005

MOST®

Specification

MOST

COOPERATION

2.3.11.1.5 Function Class BoolField

OPType Parameters
Set Content

Get

Status Content

SetGet Content

GetInterface

Interface Flags, Class, OPTypes, Name, DataType, NElements, BitName, BitSize, BitName, BitSize, ...
Error ErrorCode, Errorinfo
Content: Uns. Byte Data area, containing e.g., flags
Uns. Word
Uns. Long
NElements: Uns. Byte Number of Elements in the BoolField
BitName: String Null terminated string, indicating the name of the
respective element
BitSize: Uns. Byte Number of Bits required for encoding the element. Encoding

starts at the LSB.

If a variable of Class BoolField is defined, a field of either 8bits, 16bits, or 32bits will be reserved.
Using the flags starts at the LSB. The value 0b**** ***0 means false and 0b**** ***1 means true.
Manipulating a BoolField always requires the writing of the entire variable.

Example:

This example shows a BoolField based on "unsigned Word". There are 11 bits used for representing
Please note, that it is also possible to combine several bits for representing a special
element (flag).

some flags.

B Y T E 1 B Y T E
D7 | D6 D5 | D4 | D3 D2 D1 DO D7 D6 D5 | D4 D3 D2 D1 | DO
F.10| F.9 | F. 8 F.7|F.6 | F5|F4|F3|F.2]|F1]|FO0

Specification Document

© Copyright 1999 - 2005 MOST Cooperation

MOST Specification 05/2005 Page 85

MOST® MOST

Specification COOPERATION

2.3.11.1.6 Function Class BitSet

OPType Parameter

Set SetOfBits

Get

Status SetOfBits

SetGet SetOfBits

Getlnterface

Interface Flags, Class, OPTypes, Name, Size

Error ErrorCode, Errorinfo
Size: Uns. Byte Size of SetOfBits (Mask + Data) in Bytes

SetOfBits: BitField

BitSet in Arrays and Records:

A BitSet represents one variable. That means it is addressable as an entity via one dedicated value of
Pos.

Example:

MyArray = Array of BitSet: XXXX XXXX,0100 1001
XXXX XXXX,1110 0011
XXXX XXXX,0010 1101
XXXX XXXX,0111 1111

Requesting Status report (1):

MyArray.Get (PosX=0x0)

Answer:

MyArray.Status (PosX=0x0, XXXX XXXX,0100 1001,
XXXX XXXX,1110 0011,

XXXX XXXX,0010 1101,
XXXX XXXX,0111 1111)

Requesting Status report (2):

MyArray.Get (PosX=0x2)

Answer:
MyArray.Status (PosX=0x2, XXXX XXXX,1110 0011)
Specification Document © Copyright 1999 - 2005 MOST Cooperation

Page 86 MOST Specification 05/2005

MOST®

Specification

MOST

COOPERATION

Performing a Set operation (1):

MyArray.Set (PosX=0x0,

Result:
MyArray =

Performing a Set operation (1):

MyArray.Set (PosX=0x4,

Result:
My Array =

1000
1000
1000
1000

XXXX
XXXX
XXXX
XXXX

1111

XXXX
XXXX
XXXX
XXXX

0001,1000
0001,1000
0001,0111
0001,0111

XXxXX,1100
XXXX,1110
XXXX,0010
XXXX,0111

0000,1000

XXXX,1000
XXXX,1110
XXXX,0010
XXXX,1000

0001,
0001,
1110,
1110)

1001
0011
1100
1110

0001)

1001
0011
1100
1110

Specification Document

© Copyright 1999 - 2005 MOST Cooperation
MOST Specification 05/2005

Page 87

MOST® MOST

Specification COOPERATION

2.3.11.1.7 Function Class Container

OPType Parameter

Set Classified Stream
Get Classified Stream
Status Classified Stream
SetGet Classified Stream

Getlnterface

Interface Flags, Class, OPTypes, Name, MaxLength

Error ErrorCode, Errorinfo

The Function Class Container is used for objects that can’t be described in a satisfying way by the
other structures.

MaxLength: Unsigned Word MaxLength indicates the max size of the stream in Bytes.

Specification Document © Copyright 1999 - 2005 MOST Cooperation
Page 88 MOST Specification 05/2005

MOST® MOST

Specification COOPERATION

2.3.11.2 Properties with Multiple Parameters

Some functions contain multiple parameters. Here the principle should be to only combine functions
that are very similar in nature (e.g., Station name and Pl). Parameters that do not match like that
should be modeled in separate functions (e.g., Station name and current frequency).

Functions with multiple parameters can also be assigned to classes called array and record. In an
array, parameters are of the same type, in a record they are of different types. It is possible to build
an array of records, or a record containing an array. Such “two dimensional” constructs are allowed.

More complex constructs whose dimension exceeds two (array of array of record, or a record with two
arrays) are definitely not allowed. In addition to that, it is not allowed to reference other functions from
within a function. This means that an interface description of a function must not reference the
interface descriptions of other functions. A function must be described completely and independent of
other functions.

Function class | Explanation

Record Properties of this class contain a variable of a composite type. It may consist
of any number of single properties.

Array Properties of this class contain only elements of the same type.

Dynamic Array Properties of this class use a more dynamic approach than ordinary Arrays.

Long Array Properties of this class are used to handle large arrays in a sophisticated way.
Sequence Properties of this class contain a number of single properties of the same
Property kind.

Table 2-10: Classes of functions with a multiple parameters.

Specification Document © Copyright 1999 - 2005 MOST Cooperation
MOST Specification 05/2005 Page 89

MOST®

Specification

MOST

COOPERATION

2.3.11.2.1 Function Class Record

OPType Parameters
Set Position, Data

Get Position

Status Position, Data

SetGet Position, Data

Increment Position, NSteps

Decrement Position, NSteps

Getlnterface

Interface Flags, Class, Name, NElements, IntDesc1, IntDesc2...
Error ErrorCode, Errorinfo

In the interface description of a record, the OPTypes are omitted, since they are not necessarily
identical for all parameters. OPTypes are therefore relevant only in basic types.

NElements

Uns. Byte

Number of elements in Record

IntDescX are the interface descriptions of the single elements. Depending on the data type, one of
the interface descriptions defined for the respective class can be inserted. Please note that here in
case of elements, parameter Flags is not available. In case of OPTypes (internal OPTypes here) only
Set, Get, Status, Increment, Decrement and Error can be used.

Please note:

IntDesc only represents a group of parameters. No referencing of other functions and their
interface descriptions is done here!

Below, IntDesc is displayed with respect to the basic classes:

Class IntDesc

Switch Class, OPTypes, Name

Number Class, OPTypes, Name, Units, DataType, Exponent, Min, Max, Step

Text Class, OPTypes, Name, MaxSize

Enumeration Class, OPTypes, Name, Size, Name1, Name2,...

BoolField Class, OPTypes, Name, DataType, NElements, BitName, BitSize, BitName, BitSize, ...
BitSet Class, OPTypes, Name, Size

Array Class, Name, NElements, IntDesc

Position always consists of two Bytes, and indicates what will be set, requested, or read in the record.
The first Byte (x) indicates the position of an element in the record. If the record contains an array
(two dimensions), the second Byte specifies the line in the array. On:

° X:y:O,

the operation is related to the entire record.

o x=(Position of array in record) AND y>0,
the operation is related to a “line” in the array.

e x=(Position of array in record) AND y=0,
the operation is related to the entire array.

e x<>(Position of array in record) AND y=0,

the operation is related to the respective element in the record.

Even if the record does not contain an array, the position consists of two Bytes, but the second Byte is

not used in this case.

Specification Document
Page 90

© Copyright 1999 - 2005 MOST Cooperation

MOST Specification 05/2005

MOST® MOST

Specification COOPERATION

X —> 1

2 3 4 5
coors > (¥ [

Array y
X —> 1 2 3 4 5

3

Figure 2-32: Meaning of position x in record (above) and of position y in a record with array (below)

Data represents data according to the structure of the record, and the specifications by position.

Specification Document © Copyright 1999 - 2005 MOST Cooperation
MOST Specification 05/2005 Page 91

MOST® MOST

Specification COOPERATION

2.3.11.2.2 Function Class Array

OPType Parameters
Set Position, Data

Get Position

Status Position, Data

SetGet Position, Data

Increment Position, NSteps

Decrement Position, NSteps

Getlnterface

Interface Flags, Class, Name, NMax, IntDesc

Error ErrorCode, Errorinfo

Function class Array is very similar to Record. NMax, of type Unsigned Byte, represents the
maximum number of elements. Since the array contains only elements of the same type, there only
needs to be one IntDesc of the following type:

Class IntDesc

Switch Class, OPTypes, Name

Number Class, OPTypes, Name, Units, DataType, Exponent, Min, Max, Step

Text Class, OPTypes, Name, MaxSize

Enumeration Class, OPTypes, Name, Size, Name1, Name2,...

BoolField Class, OPTypes, Name, DataType, NElements, BitName, BitSize, BitName, BitSize, ...
BitSet Class, OPTypes, Name, Size

Array Class, Name, NElements, IntDesc

Record Class, Name, NElements, IntDesc1, IntDesc2...

Analogous to the determinations of a record, the following is valid here for an array:

X Array X Array
y —> 1 2 3
1 A
A1 Record —> R1 R2 R3

~ 0 N
z| 2] |3
W N
¥ RF 2R3
& & [z
3 a |3

A

A R1

[&)]
!
[6)]
H
N
!

R

Figure 2-33: Position x in case of an array of basic type (left), y in case of an array of record (right)

As in the case of a record, Position always consists of two Bytes, independent of whether the array
contains a record or not. If there is no record, the second Byte is not used.

Specification Document © Copyright 1999 - 2005 MOST Cooperation
Page 92 MOST Specification 05/2005

MOST® MOST

Specification COOPERATION

Please note:
The first parameter x (first Byte) always refers to the outer structure, that is, the array for an
Array of Record, and the record for a Record with Array.

If a partial structure is transmitted by using Position, the sending device is responsible for keeping
consistency with the general structure transmitted before. As an example, the AM/FMTuner may
update the signal qualities in a station list that was transferred earlier. It must take care to make sure
that the signal quality values are assigned to the correct stations.

Transmitting an array is the only time when it is possible to transmit fewer elements than the maximum
number of elements (NMax entry in the function interface Fl). As an example, on 10 receivable
stations the entire list of perhaps 100 possible entries does not need to be transferred. It must be kept
in mind that each individual element of the array must always be transferred completely. If not, an
error is assumed. The specification of the length is done in parameter Length of the application
protocol.

If an array is empty, the status is reported without data:

FBlockID.InstID.Array.Status (PosX=0x00, PosY=0x00)

Examples:
Disk information in CD changer:

The CD changer contains a magazine of up to 10 CDs. Each disk contains several tracks. The
information is modeled in the two properties Magazine and Disk.

Magazine = Array[1..10] of Record of

DiskTitle: String (Text)
TotalTime: Int (Number)
NTracks: unsigned Byte (Number)

If a disk is not available, this can be recognized by TotalTime and NTracks containing 0x00. When
requesting the FI, the formal answer is:

AudioDiskPlayer.0.Magazine.Interface

(Flags. Class. Name. NMax. Array of
Class. Name. NElements. Record of
Class. OPTypes. Name. MaxSize Text

Class. OPTypes. Name. Units, DataType, Exponent, Min, Max, Step Number
Class. OPTypes. Name. Units, DataType, Exponent, Min, Max, Step) Number

or more related to the contents:
AudioDiskPlayer.0.Magazine.Interface

(Flags. Array. “Magazine"“, OA

Record. “DiskInfo“, 03

Text. OPTypes. “DiskTitle"“, FF

Number. OPTypes. “TotalTime“. Seconds. Word. 00. 00 00. FF FF. 00 01
Number. OPTypes. “Tracks"“. 00. Unsigned Byte. 00. 01. 63. 01)

Specification Document © Copyright 1999 - 2005 MOST Cooperation
MOST Specification 05/2005 Page 93

MOST® MOST

Specification COOPERATION

On request

Controller -> CDC: AudioDiskPlayer.0.Magazine.Get (03. 01)

one receives the title of the third disk. On request

Controller -> CDC: AudioDiskPlayer.0.Magazine.Get (00. 01)

the titles of all disks are returned.

Disk = Array[1..99] of Record of

TrackTitle: String (Text)
TrackTime: Unsigned Byte (Number)

On requesting the FI, the formal answer is:

AudioDiskPlayer.0.Disk.Interface

(Flags. Class. Name. NMax. Array of
Class. Name. NElements. Record of
Class. OPTypes. Name. MaxSize Text

Class. OPTypes. Name. Units, DataType, Exponent, Min, Max, Step) Number

or more related to the contents:
AudioDiskPlayer.0.Magazine.Interface
(Flags. Array. “Disk“, 63
Record. “TrackInfo“, 02

Text. OPTypes. “TrackTitle“, FF
Number. OPTypes. “TotalTime“. Seconds. Word. 00. 00 00. FF FF. 00 01

Selecting In Arrays:

In many arrays, lines will be selected. Here, selections “1 of n” (one single line selected only) need to
be differentiated from selections “n of N” (several lines can be selected at the same time).

e nofN:
The selection here should be done by an individual parameter Selected of type Switch, which is
used as prefix (Array of record of {Selected, ...}). The change in the status of the switch can be
modified by Controller or Slave either single (Selected of a single line), or for an entire column
(Selected of all lines). In principle this kind of selection can be used in case of 1 of N as well.

e 10fN:
In case of 1 of N there is an alternative modeling which is less expensive with respect to
communication than n of N. Here a property Selected is modeled, which points onto the selected
line. The kind of pointer differs individually. So e.g., in case of station lists the pointer may point
onto the PI of the station currently active. In other cases, the position may be more effective. This
way can be very effective, if a single line shall be selected in several Arrays (e.g., an entry in all
telephone directories).

Specification Document © Copyright 1999 - 2005 MOST Cooperation
Page 94 MOST Specification 05/2005

MOST® MOST

Specification COOPERATION

2.3.11.2.3 Function Class Dynamic Array

The arrays described above are optimized with respect to a high data volume. Navigation is based on
the fixed sequence of elements in the array (Position = PosX, PosY). The position will not be
contained in the data field. In Dynamic Arrays this is not possible, since here, lines can be inserted or
removed (the sequence may vary). So a special function class DynamicArray is introduced, where
PosX will be replaced by a uniquely defined handle, the Tag of data type Unsigned Word. It is defined
as first parameter in the record:

DynamicArray = Array of Record of {Tag, ...}

For function class DynamicArray, the protocols are defined as follows:

OPType Parameter
Set Tag, PosY, Data
Get Tag, PosY
Status Tag, PosY, Data
SetGet Tag, PosY, Data
Increment Tag, PosY, NSteps
Decrement Tag, PosY, NSteps
Getlnterface
Interface Refer to section 2.3.11.2.2 on page 92
Error ErrorCode, Errorinfo
Tag uns. Word = 0x00 00 all lines
<> 0x00 00 one special line
PosY uns. Byte <> 0x00 one special column (only if Tag <> 0x00 00)
= 0x01 not allowed, no access to Tag
Please note:

The Tag belongs to the data field. This means that it is returned at the start of every line.
PosY = 0x01 denotes the Tag. With respect to consistency, accesses to a column are not
reasonable. The last line in a Dynamic Array indicates the end. It starts with Tag OxFFFF and
contains dummy data. This line is included within the NMax counter.

Specification Document © Copyright 1999 - 2005 MOST Cooperation
MOST Specification 05/2005 Page 95

MOST® MOST

Specification COOPERATION

Examples for positioning:

1. Array of Record of {Tag, EI1, EI2, EI3}
2. Tag = 0x00 00 and PosY = 0x00
3. Tag = 0x20 06 and PosY = 0x00
4. Tag = 0x6389 and PosY =3
() (2) 3) 4)
ITag |EM |EI2 |EIB | |Tag |EM |ER2 |EB | |Tag |EM [E2 |EI3 | [|Tag |EM [E2 [EI3 |
0356 0356 0356 0356
3467 3467 3467 3467
3624 3624 3624 3624
2006 2006 2006 2006
0101 0101 0101 0101
6389 6389 6389 6389
0900 0900 0900 0900
3581 3581 3581 3581
9023 9023 9023 9023
FFFF FFFF FFFF FFFF

Editing In DynamicArrays:

Like in case of simple arrays, data contents can be modified by using Set. In many cases this is
sufficient for DynamicArrays as well. Especially if the inserting and deleting of lines is done within the
Slave only. If the inserting and deleting of lines is done by the controller as well, more complex editing
functions are required. They will be defined as separate methods. Below there are two examples,
which are defined in a way, that they can be applied to several DynamicArrays (FktIDs), e.g., several
telephone directories. So there is no need for an individual instance per array. So these functions will
be placed in the range of Coordination (0x000..0x1FF).

By DynArraylns (FktID=0x080), a number Quantity (Uns. Word) of array elements (entire lines) will be
inserted in DynamicArray FktID. The lines will be inserted after that line containing Tag. The data
contents of the lines to be inserted will be transferred as Data.

DynArrayIns.Start (FktID, Tag, Quantity, Data)

DynArrayDel (FktlD=0x081) deletes a number Quantity (Uns. Word) of array elements (entire lines).
This is performed starting at the element containing Tag, which is included within deletion.

DynArrayDel (FktID, Tag, Quantity)

Examples:

DynArrayDel (FktID, 00 00, FF FF) Deleting of entire array

DynArrayDel (FktID, 87 95, FF FF) Deleting of entire array starting at line containing Tag 0x8795
DynArrayDel (FktID, 87 95, 00 01) Deleting of the line containing Tag 0x8795

DynArrayDel (FktID, 87 95, 00 00) No deleting

Specification Document © Copyright 1999 - 2005 MOST Cooperation

Page 96 MOST Specification 05/2005

MOST® MOST

Specification COOPERATION

2.3.11.2.4 Function Class LongArray

A Slave transfers the arrays and DynamicArrays (as described above) to the registered controller
using shadows. In case of changes, the shadows then will be updated. In case of big arrays that are
changed very often, this may not be practicable any longer (Amount of memory in Controller,
transmission time, bus load). Here another model — LongArray — must be applied. Where to place the
boundary between LongArray and DynamicArray, is a matter of an individual decision.

The class LongArray consists of a function MotherArray and a function class ArrayWindow. It is
possible to generate instances of class ArrayWindow dynamically. An ArrayWindow represents an
extract, a window to the MotherArray. An instance of LongArray therefore consists of at minimum two
functions, so LongArray is no simple function class.

2.3.11.2.4.1 MotherArray

The MotherArray is structured like a function of class DynamicArray. So communication of
DynamicArray is identical to the communication of MotherArray, but there are only the OPTypes
Getlinterface, Interface and Error available (refer to section 2.3.11.2.2 on page 92).

The main difference compared to DynamicArray is, that the MotherArray is not controlled and viewed
directly, but via one or more different functions. In the function interface of the MotherArray, all
OPTypes are listed that can be executed via ArrayWindows. Below there is an example for a
MotherArray as Array of Record of {Tag, Character, Number}:

Tag | El1 El 2

6243 a 01
2100 b 02
5428 c 03
0101 d 04
3245 e 05
4562 f 06
0012 g 07
5342 h 08
9473 i 09
9343 j 0A
8367 k 0B
3752 [0C
7698 | m | OD

6354 | x | 1E
3425 | y | 1F
1045 | z | 20
FFFF | FF | FF

Specification Document © Copyright 1999 - 2005 MOST Cooperation
MOST Specification 05/2005 Page 97

MOST® MOST

Specification COOPERATION

2.3.11.2.4.2 ArrayWindow

The ArrayWindow represents a part of the MotherArray. One main difference to other function classes
is, that it is not useful to instantiate an ArrayWindow in a static way (via the FBlock Specification). In
other function classes, where functions are instantiated in a static way, those functions describe fixed
properties and methods of the Slave. Their state is identical for all controllers. With respect to its
status, an ArrayWindow is strongly bound to a Controller. So there must be an individual
ArrayWindow for each Controller. So it is possible that several HMIs have individual ArrayWindows to
an address directory (MotherArray), which have different size and position.

So functions of class ArrayWindow are instantiated dynamically at runtime. Therefore a function block
(that has a MotherArray, which shall be accessed by ArrayWindows) must provide a method
CreateArrayWindow for instantiation, and a method DestroyArrayWindow (both of class Unclassified
Method). The FktID is used as instance handle, which is transferred from Slave to Controller during
instantiation.

Function OPTypes Parameter
CreateArrayWindow StartResultAck | SenderHandle, FktIDMotherArray, PositionTag, WindowSize
ResultAck SenderHandle, FktIDArrayWindow
ErrorAck SenderHandle, ErrorCode, Errorinfo
DestroyArrayWindow StartResultAck | SenderHandle, FktIDArrayWindow
ResultAck SenderHandle
ErrorAck SenderHandle, ErrorCode, Errorinfo
FktIDMotherArray FktID of the MotherArray. It is not dynamic, since MotherArray is a property of class

DynamicArray of the Slave

FktIDArrayWindow FktID of the ArrayWindow. It is generated dynamically and represents the object handle,
which is transferred during instantiation. A range for such dynamically generated FktIDs
is occupied in advance.

PositionTag uns. Word Top left corner of the ArrayWindow is positioned at PositionTag

WindowSize uns. Byte Number of elements contained by the ArrayWindow

The methods CreateArrayWindow and DestroyArrayWindow can instantiate and destroy
ArrayWindows even of several MotherArrays. If e.g., in a telephone all telephone directories are
available as MotherArrays, every HMI that is interested in a telephone directory may instantiate an
ArrayWindow for the respective MotherArray. So it can be that e.g., three telephone directories may
be watched by three ArrayWindows.

If a device enters sleep mode, all instances of ArrayWindows are destroyed. Every Controller stores
the position of its ArrayWindow with the help of the Tag of the first line. During CreateArrayWindow,
and by the help of Move (FktIDArrayWindow, Absolute, Tag), the window can be positioned again.

The status of an ArrayWindow is kept up to date in the Controller by using a shadow. Also in that
case, it is the Slave’s task to keep the shadow up to date. A creation of an ArrayWindow implies a
notification on that ArrayWindow without the need of sending a notification set message. For each
ArrayWindow there is only one single shadow, which is located in the Controller that has instantiated
it. The DevicelD of the Controller is transferred to the Slave during instantiation, so there is no need to
implement a special notification mechanism for registering the controller.

Specification Document © Copyright 1999 - 2005 MOST Cooperation
Page 98 MOST Specification 05/2005

MOST® MOST

Specification COOPERATION

By using the ArrayWindow, editing the MotherArray can be done in the conventional way:

ArrayWindow.SetGet (Tag, PosY, Data)

Tag | EI1 | EI2
6243 a 01
2100 b 02
5428 | ¢ 03
0101 | d 04
3245| e 05
4562 f 06
0012 g 07 0012| g 07 0012]| g 07
5342 | h 08 5342 h 08 5342 h 08
9473 | i 09 9473 | i 09 9473 | i B3
9343 | j 0A 9343 | j 0A 9343 | j 0A
8367 | k 0B 8367 | k 0B 8367 k 0B
3752 | 0C
7698 | m oD
6354 [x 1E
3425| y 1F
1045| =z 20
FFF | FF | FF
MotherArray ArrayWindow SetGet (9473, 03, B3)

There is no function interface for an ArrayWindow, since it only represents a “view” onto the
MotherArray. The MotherArray itself has a function interface that describes all operations that can be
performed by using an ArrayWindow.

Function OPType Parameter
ArrayWindow Set Tag, PosY, Data
Get Tag, PosY
Status Tag, PosY, CurrentSize, AbsolutPosition, Data
SetGet Tag, PosY, Data
Increment Tag, PosY, NSteps
Decrement Tag, PosY, NSteps
Getlinterface
Interface Refer to section 2.3.11.2.2 on page 92
Error ErrorCode, Errorinfo
Tag Uns. Word = 0x00 00 all lines
<> 0x00 00 one special line
PosY Uns. Byte <> 0x00 one special column (only if Tag <> 0x00 00)
= 0x01 not allowed, no access to Tag
CurrentSize Uns. Word <> current size of the MotherArray
AbsolutPosition Uns. Word <> absolute position of the Array Window in the Mother Array. The value

specifies the position of the top left cell in the MotherArray and the
counting starts at 0.)

Specification Document © Copyright 1999 - 2005 MOST Cooperation
MOST Specification 05/2005 Page 99

MOST® MOST

Specification COOPERATION

2.3.11.2.4.3 Positioning an ArrayWindow on a MotherArray

Since an ArrayWindow represents an extract of the MotherArray, it must be positioned on the
MotherArray in an appropriate way. Therefore two methods are defined. Method MoveAW is
mandatory. An instance of MoveAW is used for all instances of ArrayWindows (FktID) of a function
block.

MoveAW.Start (FktID, Mode, Number, Tag}

FktID FktID of the ArrayWindow to be moved
Mode uns. Byte 00 Top

01 Bottom

02 Up

03 Down

04 Absolute

Top and Bottom:

Top and Bottom move the ArrayWindow to the start, or the end of the MotherArray respectively. The
parameters Number and Tag are transferred as well but they are not used in this mode.

Tag | EI1 | EI2

6243 | a 01 6243 a 01

2100 b 02 2100 b 02

5428 | c 03 5428 c 03

0101 d 04 0101 d 04

3245| e 05 3245 e 05

4562 f 06

0012 g 07 0012 g 07

5342| h 08 5342 h 08

9473 i 09 9473 i 09

9343 j 0A 9343 j 0A

8367 | k 0B 8367 k 0B

3752 | 0C

7698 | m 0D

9643 | w 1D 9643 w 1D

6354 | x 1E 6354 X 1E

3425| y | 1F 325 [y | 1F

1045 z 20 1045 z 20

FFF | FF FF FFFF | FF FF
MotherArray ArrayWindow MoveAW.Start (FktID, Top, xx, xxxx)

MoveAW.Start (FktID, Bottom, xx, xxxx)

Specification Document © Copyright 1999 - 2005 MOST Cooperation

Page 100 MOST Specification 05/2005

MOST® MOST

Specification COOPERATION

Up and Down:

Up and Down are used for relative movement of the ArrayWindow, where the parameter Number
(Uns. Byte) defines the number of lines by which the ArrayWindow shall be moved. If the
ArrayWindow is moved to a position that is outside of the MotherArray it will be positioned at the
closest point within the MotherArray. This means that it will be positioned at the Top or Bottom position
depending on whether it was an Up or a Down command that tried to move it. No error will be
reported.

Tag | EI1 | EI2

6243 | a 01

2100 b 02

5428 | c 03

0101 d 04 0101 d 04

3245| e 05 3245| e 05

4562 | f 06 4562 f 06

0012 g 07 0012 g 07 0012| g 07

5342| h 08 5342| h 08 5342| h 08

9473 i 09 9473 i 09 9473 i 09
9343 j 0A 9343 j 0A 9343 j 0A
8367 | k 0B 8367 | k 0B 8367 | k 0B
3752 | 0C 3752 | 0C
7698| m 0D 7698| m 0D
6354 | x 1E

3425 y 1F

1045 z 20

FFF | FF FF
MotherArray ArrayWindow MoveAW.Start (FktID, Up, 03, xxxx)

MoveAW.Start (FktID, Down, 05, xxxx)

Specification Document © Copyright 1999 - 2005 MOST Cooperation

MOST Specification 05/2005 Page 101

MOST® MOST

Specification COOPERATION

Absolute:

Absolute adjusts an ArrayWindow in a way, that the first line contains the desired Tag. If the Tag
located too far by the end of the MotherArray, so that the ArrayWindow would exceed the valid range,
the ArrayWindow will be placed like in case of using Bottom.

Tag | EI1 | EI2

6243 | a 01

2100| b 02 2100| b 02

5428 | c 03 5428 | c 03

0101 d 04 0101| d 04

3245 e 05 3245 e 05

4562 | f 06 3245 f 06

0012 g 07 0012 g 07

5342 | h 08 5342 | h 08

9473 i 09 9473 i 09

9343 | j 0A 9343 j 0A

8367 k 0B 8367 | k 0B

3752 | 0C

7698 m oD

6354 | x 1E

3425 y 1F

1045| z 20

FFF | FF FF
MotherArray ArrayWindow MoveAW.Start (FktID, Absolute, xx, 2100)
Specification Document © Copyright 1999 - 2005 MOST Cooperation

Page 102 MOST Specification 05/2005

MOST® MOST

Specification COOPERATION

The second method SearchAW is optional. SearchAW provides a seeking of Searchstring in
MotherArray through ArrayWindow (FktID). Search is performed in that element of each line, which is
specified by PosY:

SearchAW.Start (FktID, PosY, Searchstring)

Seeking starts from the first line of ArrayWindow and runs down to the end of the MotherArray. Then
seeking continues automatically at the start of the MotherArray and ends at the first line of the
ArrayWindow. In case of success, the first line of the ArrayWindow is positioned onto the first line of
the MotherArray, which contains Searchstring. In case of failure, an error is reported (ErrorCode 0x07
“parameter not available”).

Tag | EI1 | EI2

6243 | a 01

2100 b 02

5428 | c 03 5428 | c 03
0101 d 04 0101 d 04
3245| e 05 3245| e 05
4562 f 06 4562 f 06
0012 g 07 0012 g 07 0012| g 07
5342 h 08 5342 h 08

9473 i 09 9473 i 09

9343 j 0A 9343 j 0A

8367 k 0B 8367 k 0B

3752 [0C

7698 | m 0D

6354 | x 1E

3425 y 1F

1045 z 20

FFF | FF FF

MotherArray ArrayWindow SearchAW.Start (FktID, 02, ,,c“)

2.3.11.2.4.4 Re-Synchronization of ArrayWindows

Each device containing one or several LongArrays must offer the property LongArraylnfo to its
controllers. One instance of this property services all LongArrays present in the node. The purpose of
this property is to enable controllers to re-synchronize after a system error. By this property controllers
can see if the ArrayWindows they created before still exists. It works like a normal array except that it
is only possible to do Get on it.

Specification Document © Copyright 1999 - 2005 MOST Cooperation
MOST Specification 05/2005 Page 103

MOST® MOST

Specification COOPERATION

2.3.11.2.5 Function Class Sequence Property

OPType Parameters
Set <Parameter>{, <Parameter>}

Get

Status <Parameter>{, <Parameter>}

SetGet <Parameter>{, <Parameter>}

GetInterface

Interface Flags, Class, Name, NElements, IntDesc1, IntDesc2...
Error ErrorCode, Errorinfo
NElements Uns. Byte Number of elements in Function Class Sequence Property

IntDescX are the interface descriptions of the single elements. Depending on the data type, one of
the interface descriptions defined for the respective class can be inserted. Please note that here in
case of elements, parameter Flags is not available. In case of OPTypes (internal OPTypes here) only
Set, Get, Status, Increment, Decrement and Error can be used.

Specification Document © Copyright 1999 - 2005 MOST Cooperation
Page 104 MOST Specification 05/2005

MOST®

Specification

MOST

COOPERATION

2.3.11.3 Function Classes for Methods

For methods there are only two function classes, since methods may differ significantly with respect to
the parameters transferred during Start and Result (in opposite to properties). Methods that do not
belong to these classes belong to class “unclassified method”. They must be defined in a specific

way.

Function class | Explanation

Trigger Method | This kind of method is used to trigger something. They have no parameters.

Sequence This kind of method has a number of parameters, all of the same kind.

Method

kJAni:rI]asdsiﬁed Methods that do not belong to any classified function class belong here.
etho

Table 2-11: Classes of functions for a method.

2.3.11.3.1 Function Class Trigger Method

There are no parameters in case of Start/ StartResult, and it does not return parameters in case of
Result or Processing.

OPType

Parameter

Start

Processing

Result

StartResult

StartResultAck

SenderHandle

ProcessingAck

SenderHandle

ResultAck

SenderHandle

ErrorAck

SenderHandle,

ErrorCode, Errorinfo

Getlnterface

Interface

Flags, Class, OPTypes, Name

Error

ErrorCode, Errorinfo

Specification Document

© Copyright 1999 - 2005 MOST Cooperation
MOST Specification 05/2005

Page 105

MOST® MOST

Specification COOPERATION

2.3.11.3.2 Function Class Sequence Method

OPType Parameter
Start <Parameter>{, <Parameter>}

Processing

Result <Parameter>{, <Parameter>}

StartResult <Parameter>{, <Parameter>}

StartResultAck | <Parameter>{, <Parameter>}
ProcessingAck

ResultAck <Parameter>{, <Parameter>}

Abort

Getlnterface

Interface Flags, Class, Name, Nelements, IntDesc1, InDesc2, ...

ErrorAck ErrorCode, Errorinfo

Error ErrorCode, Errorinfo

NElements Uns. Byte Number of elements in Function Class Sequence Method

IntDescX are the interface descriptions of the single elements. Depending on the data type, one of
the interface descriptions defined for the respective class can be inserted. Please note that here in
case of elements, parameter Flags is not available.

Specification Document © Copyright 1999 - 2005 MOST Cooperation
Page 106 MOST Specification 05/2005

MOST® MOST

Specification COOPERATION

2.3.12 Handling Message Notification

In many cases, HMIs and controllers must get information about values reaching their maximum or
about changes of properties in other function blocks. To avoid polling, events for automatic
notification are defined. Such events must often be sent to several devices (e.g., two HMIs). Because
of that, a notification matrix is implemented in every function block. The devices that should be
notified of changes to the status of a function are registered in this matrix.

Please note:
Only properties can be admitted to the notification matrix!

Entry Fkt | Fkt | Fkt | Fkt | Fkt
1 2 3 4 5

DevicelD1 X X X X X

DevicelD2 X X

Free for entry
Free for entry
Free for entry
Free for entry

Table 2-12: Notification matrix (x = notification activated)

The size of a notification matrix depends on the function block, on the number of properties, and on
the number of device entries, each of which must be registered individually.

When taking into consideration that a DevicelD has 16bits, a FktID has 12bits, and that in some
function blocks possibly all 64 possible nodes of the network must be registered, the notification matrix
may be very big. Nevertheless, the following subjects should be kept in mind:

e The notification matrix is only a model. It does not dictate the software implementation
method.

e Implementation may be done in very economical ways, e.g., by pointers in every function
object, that point to DevicelDs.

e In most cases it is sufficient if the notification matrix has only a few entries.
e Group addresses are allowed as DevicelD in the notification matrix.
For very simple function blocks, for example, a CD changer, it is sufficient if the notification matrix

provides only three entries for DevicelDs. A very efficient implementation is possible. For example,
by using a group address, all HMIs in the network can be notified of status changes.

Administration of the notification matrix is done via function Notification. If a controller desires to
register, or to remove registration, it sends the following protocol:

Controller -> Slave: FBlockID.InstID.Notification.Set (Control, DeviceID,
FktID1, FktID2...)

Specification Document © Copyright 1999 - 2005 MOST Cooperation
MOST Specification 05/2005 Page 107

MOST® MOST

Specification COOPERATION

The DevicelD of the controller is transported at the start of the protocol, as described in section 2.3.5
on page 63, but in order to enter group addresses, the DevicelD is transmitted in the parameter field
as well. Parameter Control specifies where the entry or deletion is done:

Control | Name Comment

0x0 SetAll Entry is done for all functions

0x1 SetFunction Entry is done for the following functions (maximum is 4)

0x2 ClearAll DevicelD of controller is deleted for all functions

0x3 ClearFunction DevicelD of controller is deleted for the specified functions (maximum is 4)
Rest Reserved

Table 2-13: Parameter Control

On SetFunction and ClearFunction, at most 4 FktIDs can be specified (16 bits each), to avoid
exceeding the maximum data length of 12 Bytes of a MOST telegram.

In the table below, the protocols with the different controls for making entries in the notification matrix
are listed together with the respective resulting entries.

Protocol Entry Fkt | Fkt | Fkt | Fkt | Fkt
1 2 3 4 5

Notification.Set (SetAll, DevicelD1) DevicelD1 X X X X X

Notification.Set (SetFunction, DevicelD2, FktlD2, FktlD4) DevicelD2 X X

Free for entry
Free for entry
Free for entry
Free for entry

Table 2-14: Protocols with different controls for making entries in the notification matrix, and the resulting entries.

Immediately after registration in the notification matrix, the controller receives the status reports of all
functions it has activated as events. If a double registering occurs, that is, a device registers that has
already been registered, the reports are sent as if the device has been registered for the first time.
This also applies to registering with group addresses.

Deleting entries is done in a similar way. Deletion of a not notified function shall not cause an error
message.

If a controller desires to read information from the notification matrix, it sends:

Controller -> Slave: FBlockID.InstID.Notification.Get (FktID)

In general, all "Report” OPTypes (Status, Error, and Interface) are notified. Status and (possibly) Error
are reported spontaneously after registration. Interface is not reported directly after registration.

As an answer to this request, a list is returned that contains all DevicelDs, which activated the
respective FktID:

Slave -> Controller: FBlockID.InstID.Notification.Status (FktID,DevicelIDl,
DeviceID2, . .DeviceIDN)

Please note:
In case of array properties, only those elements that have been changed are sent as status
during notification.

Specification Document © Copyright 1999 - 2005 MOST Cooperation
Page 108 MOST Specification 05/2005

MOST® MOST

Specification COOPERATION

Error handling:
The Notification Service reports one of the following error messages, if any error occurred:

e No more registration possible
If no more registering is possible, function Notification answers:

Slave -> Controller: FBlockID.InstID.Notification.Error (0x20,0x01)

e FBlock not registered in the Notification Service
This happens when the corresponding FBlock is not registered in the Notification Service.

Slave -> Controller: FBlockID.InstID.Notification.Error (0x20,0x20)

e Device table full
The device table of the Notification Service is to small. This error may occur when using
pointers to DevicelDs as mentioned above.

Slave -> Controller: FBlockID.InstID.Notification.Error (0x20,0x21)

¢ Notification set rejected
The corresponding properties (FktIDList) reject the "Notification.Set” command, because of
a notification matrix overflow, or the property is not registered in the Notification Service.

Slave -> Controller: FBlockID.InstID.Notification.Error (0x20,0x10,
FktIDList)

o Notification get not possible
On a received "Notification.Get” command, whenever the respective property is not registered
in the Notification Service, the following is reported:

Slave -> Controller: FBlockID.InstID.Notification.Error (0x07,0x01, FktID)

¢ No valid values or property failure
In case a controller registers at a time, where no valid values of the respective property are
available or a property becomes temporarily unavailable, Notification sends the following
message to all nodes that are registered for the respective property:

Slave -> Controller: FBlockID.InstID.FktId.Error (0x41)

This message is also sent, in case a node registers for the property after the problem
occurred. Failure of a whole function block is handled in section 3.2.5.5.

Please note:
For keeping the system flexible, and for optimizing the communication effort with respect to
the needs, the notifications are re-built at every system start (NetOn).

Specification Document © Copyright 1999 - 2005 MOST Cooperation
MOST Specification 05/2005 Page 109

MOST® MOST

Specification COOPERATION

3 Network Section

3.1 MOST Network Interface Controller and its Internal
Services

The MOST Network Interface Controller provides extensive tools for operating the MOST bus simply
and safely, and for the transmission of data of different origins. Based on these tools, higher layers
are defined. The following sections give an overview of the features of the MOST Network Interface
Controller that are available for simplifying the definition of higher layers.

3.1.1 Bypass

If the bypass is closed, all signals received at the input of the MOST Network Interface Controller are
forwarded to the output of the MOST Network Interface Controller. In this state, the respective device
is “invisible” to the network. The device will be considered for the automatic counting of bus
components only after opening the bypass, which gives access to the bus.

After the MOST Network Interface Controller is reset, the all-bypass is closed. This allows a very fast
startup of the system, especially on usage of an optical wakeup mechanism. The all-bypass must be
opened by the controlling microcontroller after wakeup of the component.

3.1.2 Source Data Bypass

In order to put source data on the MOST Network, the source data bypass must be opened in the
device. That means that the source data is no longer passed through the MOST Network Interface
Controller without being processed (that is, not handled by the routing engine RE), but can be routed
now, e.g., from a source data port to the bus.

Based on the internal processing of data, a delay of two samples is added in the signal path. The
source data bypass should be opened only in devices that put source data onto the bus on runtime.

3.1.3 Master/Slave, Active and Passive Components

Basically, a MOST system consists of up to 64 nodes with identical MOST Network Interface
Controllers. By configuration, any of the MOST Network Interface Controllers can be the Timing
Master; all the others are slaves. The Timing Master provides generation and transporting of system
clock, the frames, and blocks. All Slave devices derive their clock from the MOST bus.

The Timing Master, as well as active Slave devices (source data bypass is open, device can put
source data on the bus) add two samples of delay to the path of source data.

A passive Slave device has a closed source data bypass. Since in that case the routing engine is
inactive, no delay is generated.

Specification Document © Copyright 1999 - 2005 MOST Cooperation
Page 110 MOST Specification 05/2005

MOST® MOST

Specification COOPERATION

3.1.4 Data Transport

The bit stream is optimized in such a way that processing is easy and maximum functionality is
supported. This includes mechanisms for automatic channel routing, network delay detection, and
burst data channel management.

The MOST network technology defines an intelligent bit stream, which is capable of providing all
MOST network features as described above.

Data is transferred in a continuous bi-phase encoded bit stream yielding more than a 24.8Mbps data
rate at a 44.1 kHz rate and a bit error rate of less than 107°.

Since the MOST system is fully synchronous, with all devices connected to the bus being
synchronized to the bus, no memory buffering is needed (unlike isochronous, or asynchronous
devices). This keeps cost low.

The sample frequency in a MOST system can be chosen in a range between 30kHz and 50kHz. The
frequency depends directly on the application components. Some devices, for example, CD drives,
work at a device-specific sample rate. In systems optimized for cost, such devices are regarded as
fixed with respect to sample frequency. The sample frequency that is used most should be defined as
the system frequency, to avoid sample rate conversion in the different devices.

3.1.4.1 Blocks

Organization of data transfer in blocks of frames is required for network management and control data
transport tasks.

A block consists of 16 frames with 512 bits each. Per frame, 60 Bytes of data are available for source
data (synchronous and asynchronous packet data), while two Bytes transport control data. The 2
Bytes of 16 frames (1 block) are added to the control frame that transports a control telegram.

3.1.4.2 Frames

The MOST frame structure is designed in a way that provides maximum flexibility in terms of
compatibility with a number of existing communication and data transport requirements without any
drawbacks in implementation cost or processing overhead. It allows easy re-synchronization, clock
and data recovery with the highest data quality and integrity. Built-in structures allow simple network
management on the lowest layers avoiding overhead and cost shortcomings.

For synchronization, two different bus node types are required. A Timing Master that generates the
frames, and Slave devices that synchronize to the Master clock on the bus.

Specification Document © Copyright 1999 - 2005 MOST Cooperation
MOST Specification 05/2005 Page 111

MOST® MOST

Specification COOPERATION

A 4

16 FRAMES = 1 BLOCK

A

——— Frame = 512 bit = 22,67 micro-seconds @ 44.1 kHz Frame Rate =~ ——»
$F G | 8

— Synchronous Channel _,le Time Slot Available for _l¢ Control 5!
Time Slots Asynchronous Transport Frame

Boundary Descriptor Frame Control

Preamble Parity

Figure 3-1: Structure of blocks and frames on the MOST bus

The 64 Bytes (512 bits) wide frame has the following structure:

Byte Bit Task
0 0-3 Preamble
0 4-7 Boundary descriptor (synchronous area count value)
1 8-15 Data Byte 0
2 16-23 Data Byte 1
60 480-487 Data Byte 59
61 488-495 Control frame Byte 0
62 496-503 Control frame Byte 1
63 504-510 Frame control and status bits
63 511 Parity bit

Table 3-1: Structure of the MOST frame

Specification Document © Copyright 1999 - 2005 MOST Cooperation
Page 112 MOST Specification 05/2005

MOST® MOST

Specification COOPERATION

3.1.4.2.1 Preamble

The preambles are used internally to synchronize the MOST core and its internal functions to the bit
stream.

For synchronization to a frame, two different mechanisms are used for Slave and Master nodes. For a
Slave node, the first reception of valid preambles after reset, power-up, or loss of lock indicates that
phase lock on the input bit stream has been accomplished.

This method ensures that the Slave node is phase- and frequency-locked to the bit stream, and hence
the Master node. In a Master node, the transmitted bit stream is synchronized to an external timing
source such as a crystal oscillator, SCK, FSY, or S/PDIF source.

Once all the nodes in the network have locked to the master’s transmitted bit stream, the received bit
stream has the correct frequency, but will be phase shifted with respect to the transmitted bit stream.
This phase shift is due to delays from each active node, and additional accumulated delays due to
tolerances in the phase lock within the Slave nodes. The Master node re-synchronizes the received
data by the use of a PLL to lock onto the incoming bit stream, thereby re-synchronizing the incoming
data to the proper bit alignment.

3.1.4.2.2 Boundary Descriptor

The boundary descriptor provides a flexible way of changing the bandwidth for synchronous and
asynchronous data transmission. It represents the number of 4 Byte blocks (quadlets) of data used for
synchronous data. This value is used to determine the boundary between the synchronous and
asynchronous data areas in the frame. A count value of zero indicates no synchronous data and 15
quadlets of asynchronous data, while a count value of 15 indicates 15 quadlets of synchronous data
and no asynchronous data.

By this means, a 60 Byte data field can be allocated to either synchronous or asynchronous data on a
4 Byte resolution. As such, it can be optimized to different requirements, depending on the amount of
bandwidth required for each type of data.

Note that the maximum number of asynchronous data Bytes per frame is 36 Bytes, which means that
the boundary descriptor values can be between 6 and 15.

The boundary descriptor is managed by the Timing Master of a MOST Network. Please note that all
synchronous connections must be re-built after having changed the Boundary Descriptor.

3.1.4.2.3 MOST System Control Bits

All other bits within the frame are for management purposes on the network level. While the preamble
provides synchronization and clock regeneration, the parity bit indicates reliable data content and is
used for error detection and phase lock loop operation.

Specification Document © Copyright 1999 - 2005 MOST Cooperation
MOST Specification 05/2005 Page 113

MOST® MOST

Specification COOPERATION

3.1.4.3 Source Data

3.1.4.3.1 Definition of Control Data and Source Data

Depending on the kind of data and bandwidth, the MOST system provides different transmission
procedures.

Telegrams for controlling devices or slow asynchronous data are transmitted via the control channel of
the MOST Network Interface Controller. For transmitting asynchronous data of higher bandwidth, a
packet-oriented asynchronous data area is available. Synchronous data, such as audio signals of a
CD drive, can be transmitted directly in the synchronous data area of the network. A more detailed
description of the different data areas can be found in the sections below.

3.1.4.3.2 Differentiating Synchronous and Asynchronous Data

Sixty data Bytes (15 quadlets) total are available for synchronous and asynchronous (packet) data.
The number of synchronous and asynchronous Bytes is specified by the boundary descriptor value
described above.

3.1.4.3.3 Source Data Interface

The MOST Network Interface Controller can handle a variety of different data formats at its source
data port. The source data port formats are controlled via the internal registers of the MOST Network
Interface Controller.

3.1.4.3.4 Transparent Channels

In addition to the different transmission procedures, the MOST Network provides a transparent
interface (transparent port). This port is over sampled (depending on the system’s sample rate, and on
the sampling rate chosen for the transparent port) and routed via the network. Therefore source data
port 1 is available. It provides, for example, the transparent transmission of a RS232 interface, i.e.,
without synchronizing RS232 to the bus.

If no transparent channel is required, source data port 1 can be used as a standard source data port.

Specification Document © Copyright 1999 - 2005 MOST Cooperation
Page 114 MOST Specification 05/2005

MOST® MOST

Specification COOPERATION

3.1.4.3.5 Synchronous Area

The synchronous channel time slots are available for real-time data such as audio/video or sensors
and eliminate the need for additional buffering in analog-to-digital converters (and digital-to-analog
converters) or in single speed CD devices for audio and video.

Accessing this data is provided by time division multiplexing (TDM) and allocation of quasi-static
physical channels for a certain period of time (e.g., while playing an audio source). The bandwidth for
such a channel can be adjusted by allocating any number of Bytes to one logical channel. The
maximum number of Bytes available in a synchronous channel is 60 Bytes/frame, which is
corresponding to 60 x 8 bits or 15 stereo channels of CD-quality audio. The typical frame rate is
44,100 frames/second.

The routing engine (RE) is used to route data to and from the appropriate sources or sinks within a
node. Internal synchronization is provided so input data does not need to be phase-aligned to the
MOST Network Interface Controller. The RE provides full flexibility in directing data from any source
to any sink just by setting the appropriate value in the corresponding registers.

3.1.4.3.6 Asynchronous (Packet Data) Area

Another time slot is available for asynchronous data transport as required for more packet-oriented,
burst-like data. In contrast to the control data channel, the asynchronous data channel provides
transmission of longer data packets.

Access to this type of data is provided in a token ring manner. Each node has fair access to this
channel and its bandwidth can be controlled using the boundary descriptor in a step of four Bytes
(quadlets). The maximum packet length on an asynchronous channel when using the 48 Bytes data
link layer, is 48 Bytes. In case of using an alternative data link layer, the maximum packet length is
1014. The data on this channel is CRC protected. The asynchronous message is defined as follows:

Byte Task
0 Arbitration
1-2 Target address
3 Length (in Quadlets = 4 Bytes)
4-5 Own address (Source address)
6-53 Data area
54-57 CRC

Table 3-2: Structure of a frame in the asynchronous area (48 Bytes data link layer)

Specification Document © Copyright 1999 - 2005 MOST Cooperation
MOST Specification 05/2005 Page 115

MOST® MOST

Specification COOPERATION

Byte Task
0 Arbitration
1-2 Target address
3 Length (in Quadlets = 4 Bytes)
4-5 Own address (Source address)
6-1019 Data area
1020-1023 | CRC

Table 3-3: Structure of a frame in the asynchronous area (alternative data link layer)

Since the asynchronous data area is variable, it can take several frames to complete a message. The
corresponding management such as arbitration and channel allocation is provided by the MOST
Network Interface Controller. A hardware CRC is provided. The CRC is calculated in the background

and can be indicated in a register at the end of each asynchronous message. A low-level retry
mechanism is not implemented.

Specification Document © Copyright 1999 - 2005 MOST Cooperation
Page 116 MOST Specification 05/2005

MOST® MOST

Specification COOPERATION

3.1.4.4 Control Data

3.1.4.4.1 Control Data Interface

The transmission of control data to and from the MOST Network Interface Controller is done via the
control bus.

3.1.4.4.2 Description

The control data is used mainly for communication between the single nodes of the bus. This is where
commands, status and diagnosis messages, as well as gateway messages are handled. The protocol
on this channel runs in a carrier sense multiple access (CSMA) manner offering predictable response
times, which are considered essential in an audio/video control network. At a system sample
frequency of 44.1 kHz, 2756 messages per second are transmitted, which corresponds to a gross data
rate of 705.6 kBit/s.

Since 2 out of 64 messages are used for a system wide distributing of the allocation information by the
network, the number of messages per second available for control messaging is 2670. When
subtracting the data used for control and data securing, the net data rate (user data plus addressing)
is 405.84 kBit/s, which corresponds to 19 Bytes per message that can be read from the MOST
Network Interface Controller.

A MOST device can access every third message propagated through the network. So a single device
has a maximum message rate of 890 per second, or a net data rate of 135.28kBit/s

There are two kinds of control messages. Normal messages provide control of applications, while
system messages handle system-related operations such as resource handling. A control data
message is 32 Bytes long and has the following structure:

Byte Task
0-3 Arbitration
4-5 Target address
6-7 Own address (Source address)
8 Message type
9-25 Data area
26-27 CRC
28-29 Transmission status
30-31 Reserved

Table 3-4: Structure of a control data frame

Please note:
The delay time between two messages in case of low level retries — must be identical in all
nodes of a MOST Network.

Message type:
Normal messages:
Single cast (logical or physical addressing)
Groupcast
Broadcast
System messages:
Resource Allocate
Resource De-Allocate
Remote GetSource

Specification Document © Copyright 1999 - 2005 MOST Cooperation
MOST Specification 05/2005 Page 117

MOST® MOST

Specification COOPERATION

Arbitration is provided automatically by the MOST Network Interface Controller in case a node wants
to send a message. In order to provide fair arbitration even at high bus loads, a double arbitration
mechanism is used. This ensures that an access is not depending on the communication load of
upstream devices and the priority is not depending on the network position. Rejection of messages is
flagged and automatic retransmission is performed. The number of retries can be defined by the
application software. If the maximum of retries is reached without success, a transmission error is
indicated to the controlling device (e.g., external micro controller).

Specification Document © Copyright 1999 - 2005 MOST Cooperation
Page 118 MOST Specification 05/2005

MOST® MOST

Specification COOPERATION

3.1.5 Internal Services

3.1.5.1 Addressing
The MOST Network Interface Controller supports four different ways of addressing:

¢ Node position in the ring.
The node position is generated automatically in each node during the locking procedure of the
MOST Network.

e Unique node address (2 Bytes).
This address can be set by the application.

e Group address (1 Byte).
Group address can be set by the application. A group is made up of devices that have the
same number in the group address register.

e Broadcast
The broadcast address is a special group address. When used, the message is received by
all nodes in the ring. Until the last node in the ring has acknowledged a broadcast message,
communication via the control channel is suppressed for other messages.

The different ways of addressing are mapped into the address area of a MOST Network Interface
Controller:

Address range Mode
0x0000...0x000F Internal Communication

0x0010...0x00FF Static address range

0x0100...0x013F Dynamic calculated (0x0100+PQOS) address range
0x0140...0x02FF Static address range

0x0300...0x03FF Reserved for group/ broadcast

0x0400...0x04FF Node position (0x0400 + POS) address range.
0x0500...0xOFEF Static address range

O0xOFFO0 Optional debug address
0x0FF1...0xOFFD Reserved
OxOFFE Init address of Network Service
OxOFFF Init address of Network Interface Controller
OxFFFF Uninitialized logical node address

Note: the highest nibble is reserved for future use

Table 3-5: Addressing modes vs. address range

Group addressing is typically used for controlling several devices of the same type (e.g., active
speakers). The grouping of devices must be established during definition of the system.

Specification Document © Copyright 1999 - 2005 MOST Cooperation
MOST Specification 05/2005 Page 119

MOST® MOST

Specification COOPERATION

3.1.5.2 Support at System Startup

The MOST Network Interface Controller meets all requirements of a low level startup. Several
supporting mechanisms are provided. All components of the system get a unique number, with
numbering starting at the Timing Master at 0x00, and then incremented by one. These numbers can
be used for node position addressing. Furthermore, every device receives the information about the
total number of devices in the ring. The MOST Network Interface Controller also provides a wakeup
mechanism.

3.1.5.3 Delay Recognition

Based on the fact that every node may be active or passive with respect to source data handling
(source data bypass open or closed), and that every active node generates two samples of delay, it is
useful to have information about source data delay, for example, for noise compensation applications,
or in high-end audio applications.

Therefore a mechanism is implemented in each MOST Network Interface Controller, giving access to
information about the total delay of the system, and to the delay up to the local node with respect to
the Timing Master.

3.1.5.4 Automatic Channel Allocation

Since administration of up to 30 audio channels would need many resources on an application’s side,
the MOST system supports resource administration on the MOST Network Interface Controller level.

Allocating one or more audio channels (up to 64 bits per allocation procedure) is done via a request
from an application to the Timing Master of the network. If there are enough channels, the application
will get a handle, by which source data can be routed onto the network. The handle can also be used
for de-allocating. A channel resource allocation table, distributed automatically in the ring (on the
MOST Network Interface Controller level), gives access to the current allocation status of the channels
in each node.

The channel map that belongs to the handle can be retrieved from the MOST Network Interface
Controller, or it can be delivered during connection management via control messages. It is possible to
change allocation during runtime.

3.1.5.5 Detection of Unused Channels

Detection of unused channels, i.e., channels, that are allocated by a device, but which are no longer
used, is done with the help of the channel resource allocation table. Only the timing master can
determine from its channel resource allocation table if there are unused channels. If there are unused
but allocated channels, they should be de-allocated with respect to the network resources.

Specification Document © Copyright 1999 - 2005 MOST Cooperation
Page 120 MOST Specification 05/2005

MOST® MOST

Specification COOPERATION

3.2 Dynamic Behavior of a Device

3.2.1 Overview

This section describes the dynamic behavior of the system — the states and state transitions of the
system, with a special focus on network dynamics (or the dynamic of the network interface of a
device). The expression NetInterface stands for the entire communication section of a device, that is,
the optical interface, the MOST Network Interface Controller, and the Network Service.

The figure below shows a layer model of a device. The lowest layer is the power supply. On this
layer, every hardware function is built, that is, the hardware of the Netlnterface, which is made up of
the MOST Network Interface Controller, the optical interface, and the controller on which the Network
Service are running. The Network Service make up the next layer, on which the higher services of
address management, power management and network error management are based. At the top
layer there is the application itself.

Application

Network Service

MOST Network Interface Controller

Figure 3-2: Layer model of a device

Specification Document © Copyright 1999 - 2005 MOST Cooperation
MOST Spegification 05/2005 Page 121

MOST® MOST

Specification COOPERATION

Generally, for each device, the device specification must define all the possible combinations of the
states of the application section and the communication section. Especially from the view of the
network, there are three states that are mandatory for each device:

1. DevicePowerOff: Communication section is in state NetinterfacePowerOff. The application
section in a non-waking device is in state ApplicationPowerOff, or in a waking device in state
ApplicationSleep.

2. DeviceStandBy: This state is mainly influenced by state ApplicationLogicOnly. The logical
function of the application is running, while peripherals with high power consumption such as
drives are switched off. This state is reached after state DevicePowerOff. The communication
section is in state NetIinterfaceNormalOperation.

3. DeviceNormalOperation: The communication section as well as the application section are in
state NormalOperation.

Since these main states are only a few of all possible device states, it is not useful to use a diagram.
The following description gives an impression of what may happen in the single states with respect to
the communication and application sections.

DevicePowerOff:

e The application may be awakened, e.g., by a timer, can check an external signal, and return to
state ApplicationSleep without waking up the Netinterface. The device does not leave the
mode.

e The application may be awakened, e.g., by a timer, and can then wake up the Netinterface,
and by that the entire network. The device changes to state DeviceStandBy, or state
DeviceNormalOperation

e The application may be awakened by light on the bus and then wakes the application during
initialization phase. The device changes to state DeviceStandBy.

DeviceStandBy:

o If the application is used, or its peripherals are in use, the device changes to state
DeviceNormalOperation.

o Iflight on the bus is switched off, the device changes to state DevicePowerOff.

DeviceNormalOperation:

o Iflight on the bus is switched off, the device changes to state DevicePowerOff.

The following description of the dynamic behavior is done from the bottom up. The most significant
subjects regarding power supply are described in section 4.1 on page 203. The following section
focuses on the dynamic behavior of the NetInterface.

Specification Document © Copyright 1999 - 2005 MOST Cooperation
Page 122 MOST Specification 05/2005

MOST® MOST

Specification COOPERATION

3.2.2 Netinterface

Here, the states of a device are seen from the view of the Netinterface. Operations within the
application of a device are not considered. Only the interfaces to the application are shown. The
following figure shows the states of the NetInterface and the events that lead to state transitions. The

following sections explain the individual states.

Netinterface
Ring break
diagnosis

Diagnosis Diagnosis
Error Start .)
Shut Down Diagnosis
Ready

Netinterface
PowerOff

Start Up
Normal

Shut Down

Init Error Error
Shut Down Shut Down

NetInterface
Normal
Operation

i Application
\ Init J

NetInterface
Init

Init Ready

Figure 3-3: Flow chart “Overview of the states in NetInterface”

Specification Document © Copyright 1999 - 2005 MOST Cooperation
MOST Specification 05/2005

Page 123

MOST® MOST

Specification COOPERATION

3.2.2.1 NetInterfacePowerOff

In state NetInterfacePowerOff, the Netinterface is switched off from the view of the network. The FOT
does not emit light. The MOST Network Interface Controller does not necessarily need to be switched
off, since the application may still use function groups of it (e.g., RMCK generation).

State NetInterfacePowerOff is left when one of the following events occurs:

Event Transition to Cause

Start Up NetInterfacelnit A Netlnterface is activated either by light at the
receiving FOT, by the application (Hypothetical
example: phone receives a call),

or by a switch at the device.

Diagnosis Start NetinterfaceRingBreakDiagnosis A Netlnterface is activated by connecting to power
(for information about signal SwitchToPower please
refer to section 4.1 on page 203)

Table 3-6: Events in state NetiInterfacePowerOff

3.2.2.2 Netinterfacelnit

In this state, Netlnterface is initialized to the point where the MOST Network Interface Controller is
able to communicate with other nodes.

This state is left when one of the following events occurs:

Event Transition to Cause
Init Ready NetInterfaceNormalOperation NetInterface is ready for communication (see below).
Init Error Shut Down NetInterfacePowerOff Error occurred during initialization (see below).

Table 3-7: Events in state Netinterfacelnit

Causes for event Init Ready:

e In the Master device:
Net Activity and stable lock (at minimum for time t.,.«) were recognized. Lock is called stable
if for a period of time t_ ..« No unlock events occurred.

e In a Slave device:
Stable lock (at minimum for time t_,.) was recognized and the Boundary Descriptor value has
a valid value (>5). This fact is the basis for the statement that the Timing Master of the
system has also recognized stable lock, and the ring is closed.

Causes for event Init Error Shut Down:

¢ In the Master device:
Timeout tconig, OCcurs before a stable lock can be recognized.

¢ In a waking Slave device:
Timeout tconfig, 0Ccurs before a closed ring can be recognized. Error Error_NSinit_Timeout is
stored by the application.

¢ In a non-waking Slave device:
Timeout tconig, €Xpires before light was recognized, or a closed ring was recognized; or the
light was switched off again.

Specification Document © Copyright 1999 - 2005 MOST Cooperation
Page 124 MOST Specification 05/2005

MOST® MOST

Specification COOPERATION

In a Slave device (non-waking) the all-bypass of the MOST Network Interface Controller is deactivated
(opened) as soon as a short lock is recognized (i.e., the lock does not need to be stable for t). In
case of a waking Slave device and the Master device, the all-bypass is deactivated immediately after
having entered this state (light at the output).

As soon as the initialization of the MOST Network Interface Controller starts, the logical node address
has to be set to OXOFFE.

The flow chart below shows the behavior in state Netlnterfacelnit. A differentiation is made between
Master and Slave. On this level, Master means Timing Master and Slave means Timing Slave.

Device with the Timing Master

Start Up

Y

MOST Network
Interface Controller
will be configured as

Master

(Light at output)

The Start Up Event will be
activated either by a switch at
the device, by light at the input of
the FOT, or by the application.

/

Set NodeAddress in
MOST Network
Interface Controller
to OXOFFE

/

Set the Boundary
Descriptor = 0x04

Y

Start timer
toonfig

y

yes

Light at input?

Lock stable?

Y
no
Timeout?
Set the Boundary
Descriptor = valid
yes value (>0x05)
Y Y

Init Error)

Figure 3-4: Behavior of a Master device in state Netinterfacelnit

Specification Document © Copyright 1999 - 2005 MOST Cooperation
MOST Specification 05/2005 Page 125

MOST® MOST

Specification COOPERATION

When entering state Netinterfacelnit, the Timing Master loads the Boundary Descriptor with the
“invalid” value 0x04. This value is transferred to all MOST Network Interface Controllers via the frame.
As soon as the Timing Master recognizes a stable lock, it sets the Boundary Descriptor to a valid value

(>0x05). By doing this, every Slave in the ring can recognize when the Timing Master has reached
stable lock.

Waking Slave Device

The Start Up event will be
generated by the application

< Start Up > (e.g. telephone receives a call),
or by a switch at the device

A\

MOST Network
Interface Controller
will be configured

as Slave
(Bypass disabled,
light at output)

/

Set NodeAddress in
MOST Network
Interface Controller
to OXOFFE

Y

Start timer
tconfig

-

Y

no
Timeout?

yes

Light at input?

Y

Init Error
Shutdown Shutdown

Figure 3-5: Behavior of a waking Slave device in state Netinterfacelnit

After having woken the ring (the light returned from Timing Master), the Slave Device goes to
Shutdown. From there it starts up as a standard Slave Device, woken by the Timing Master.

Specification Document © Copyright 1999 - 2005 MOST Cooperation
Page 126 MOST Specification 05/2005

MOST®

Specification

MOST

COOPERATION

Woken Slave Device

Start Up

Y

MOST Network
Interface Controller
will be configured
as Slave
(All Bypass enabled)

Y

Set NodeAddress in
MOST Network
Interface Controller
to OXOFFE

A\

Start timer
teonfig

no

The Start Up Event
will be generated at
the input of the FOT.

Light at input?

yes

Deactivate Bypass at
recognized Lock

no

Figure 3-6: Behavior of a woken Slave device in state Netinterfacelnit

)

Light at input?

yes

Y

Timeout?

no

Y

Lock stable
and ring closed?

yes

Y

Init Ready

no

————

yes

——— P~

Init Error

Shutdown

The ring is closed as soon as
the Boundary Descriptor in the
Slave Device has a valid value

Specification Document

© Copyright 1999 - 2005 MOST Cooperation
MOST Specification 05/2005

Page 127

MOST® MOST

Specification COOPERATION

3.2.2.3 NetinterfaceNormalOperation

This state is reached as soon as the initialization has reached a level where the MOST Network
Interface Controller can start to communicate with other nodes in the network. When entering this
state, the part of the application that is connected to the communication section is initialized.

Examples for initializing a higher layer due to NetOn Event:
e Check of system configuration and building of the Central Registry (refer to section 3.3.3).
e Setting of the logical node address and group address (refer to section 3.3).
¢ Initialization of the sending and receiving parts of the Network Service.

In certain circumstances, other application units are initialized earlier, independently from the state of
the Netlnterface.

Event Transition to Cause

Normal Shut Down NetInterfacePowerOff Netinterface will be deactivated by switching off light.

Error Shut Down NetInterfacePowerOff Netinterface will be deactivated due to a critical
unlock.

Net On Report to an application Entering state NetInterface Normal Operation

Table 3-8: Events in state NetinterfaceNormalOperation

The Normal Shut Down event is generated as soon as no light is recognized at the input.

In state NetinterfaceNormalOperation, the Network Service checks the lock state of the PLL of the
MOST Network Interface Controller. On an unlock, the application is informed as soon as possible by
an unlock event. Every application then has to save its output signals (e.g., amplifier mutes its
outputs).

In addition to that, the Network Service checks the length of an unlock, or the occurrence of a series of
unlocks. If the length of a single unlock exceeds the time tynock, an Error Shut Down event (critical
unlock) is generated.

In case of a series of unlocks the time of the different unlocks are accumulated. If this accumulated
time is greater than ty,ec (@ single unlock which cause a critical unlock) an Error Shut down event is
generated. The accumulated time is reset whenever a stable lock is reached, that is if there is a lock
that lasts at least t_ ocx.

The following example will clarify the meaning. (The timer values used can be found in section 3.9 on
page 196).

Specification Document © Copyright 1999 - 2005 MOST Cooperation
Page 128 MOST Specification 05/2005

MOST® MOST

Specification COOPERATION

[] Unlock [] Lock [| Critical Unlock [| Stable Lock

Stable Lock | [Critical Unlock |

Stable Lock | | Lock [[Lock | | Lock | Stable Lock

Stable Lock | \ Lock | \ Critical Unlock |

® © e O

Stable Lock | Lock | Stable Lock | Lock | Stable Lock

Figure 3-7: Examples of the behavior when unlocks occur.

1. The first example shows an unlock that persists longer than ty,o« This results in a critical
unlock (Error Shutdown event).

2. The second example shows a series of short unlocks with an accumulated total that is less
than tynock. In this case no critical unlock will occur.

3. The third example shows when two unlocks with an accumulated total that exceeds tyniock-
This leads to a critical unlock.

4. The unlocks in the last example are almost as long as tynock- The example shows that the
system can withstand a series of long unlocks provided that a lock time of at least t o is
interspersed between them.

In addition to that, the change in number of MOST devices is checked. If this number indicates a
Network Change Event, the application will get informed about that.

The flow chart below shows the behavior in state NetInterfaceNormalOperation:

Specification Document © Copyright 1999 - 2005 MOST Cooperation
MOST Specification 05/2005 Page 129

MOST® MOST

Specification COOPERATION

Every device

Init Ready

Report to application: Initialization of the next upper
Net On Event layer e.g. setting address,
verifying system configuration,
etc.
‘ J—
yes
Off Request? Off Request is the request (by a
higher layer) to switch off light
no —
An unexpected Net Off Event, i.e.
. . Report to application: without having started method
n
Light at input? Net Off Event v ShutDown in NetBlock before,
will be interpreted as Error Shut
Down in the higher layer
Change in yes AT
number of MOST NemorkChangeEvent
Devices? 9
<
yes Report to application:
?
Unlock? Unlock Event
no
Report to application: no
Lock Event
yes
Report to application:
Net Off Event
v
Error Shut Normal Shut
Down Down
Figure 3-8: Behavior in state NetinterfaceNormalOperation
Specification Document © Copyright 1999 - 2005 MOST Cooperation

Page 130 MOST Specification 05/2005

MOST® MOST

Specification COOPERATION

3.2.2.4 Netinterface Ring Break Diagnosis

A simple recognition of a fatal error is possible in any state. Ring break diagnosis serves the purpose
of localizing a fatal error in the network. It is run not during normal operation, but in the car repair, or
at the assembly line.

The RingBreakDiagnosis process can be started by various triggers, which must be chosen and
implemented by the System Integrator. One possible way is, to start the RingBreakDiagnosis by
disconnecting the System from the power source for a short time. In this case, RingBreakDiagnosis is
entered, when signal SwitchToPower of the SwitchToPowerDetector indicates, that the device was
connected to power first time (e.g., after reconnection of the car’'s battery). This signal is not
evaluated during NetOn. If SwitchToPower is used to trigger RingBreakDiagnosis, all devices must
start the diagnosis within tpiag start -

In state NetInterfaceRingBreakDiagnosis the network cannot reach normal operation. In this state, a
relative node position is determined in every device. This information can be used in case of a fatal
error (ring break or defective device) to localize the error.

If there is no fatal error, the Netinterface immediately changes to state NetinterfaceNormalOperation.
In case of a Diagnosis Error Shut Down event, the position determined in each device describes the

position relative to the device that was configured as Timing Master at the end of RingBreakDiagnosis
(since there was no light at its input).

rel. Pos.: 1

rel. Pos.: 0 rel. Pos.: 3

Figure 3-9: Localizing a fatal error with the help of ring break diagnosis.

Event Transition to Cause
Diagnosis Ready NetInterfaceNormalOperation No fatal error.
Diagnosis Error Shut Down | NetInterfacePowerOff Fatal error (Ring break or defective device)

Table 3-9: Events in state NetinterfaceRingBreakDiagnosis

Specification Document © Copyright 1999 - 2005 MOST Cooperation
MOST Specification 05/2005 Page 131

MOST® MOST

Specification COOPERATION

During RingBreakDiagnosis a device stays configured as Timing Master, until it recognizes light at its
input, or until the Diagnosis Error Shut Down event is generated by occurrence of the timeout
(tbiag_Master O tpiag siave respectively). On a fatal error, the application stores the error
Error_Ring_Diagnosis with the relative ring position.

After recognition of a stable lock, a Timing Master device generates a Diagnosis Ready event and
changes immediately to state NetInterfaceNormalOperation.

The timeout values (tpiag_master O tpiag_siave) CAN be changed through the system integrator, if alternative
approaches for ring break diagnosis are used. In this case, the system integrator must make sure that
all devices in the network are able to start the diagnosis process within the specified timeouts.

As soon as a device, which does not contain the Timing Master under normal operation conditions,
recognizes light at its input, it is configured as Slave (all-bypass enabled). The all-bypass is
deactivated after a recognized lock. If no lock errors occur for a time tpiag oo (Stable lock), the relative
ring position is determined.

If, on stable lock, the Boundary Descriptor value is greater than 5, the ring is closed. There is no
defect and the NetInterface changes to state NetinterfaceNormalOperation.

If the ring could be closed, every Netinterface switches to state NetinterfaceNormalOperation. The
application will get notified about that by the NetOnEvent. After that, all high level initializations must
be performed (Building of the Central Registry, address initialization, notification...).

If the ring could not be closed since a ring break exists, devices should not be restarted by incoming
light until tpiag restart N@s passed.

The following flow charts show the behavior in the state NetinterfaceRingBreakDiagnosis:

Specification Document © Copyright 1999 - 2005 MOST Cooperation
Page 132 MOST Specification 05/2005

MOST® MOST

Specification COOPERATION

Device with Timing Master
Diagnosis The Diagnosis Start Event will be
Start generated by connecting to
power

MOST Network
Interface Controller
configured as
Master (Light at
output)

v

Set the Boundary
Descriptor= 0x04

v

Start Timer
(t_Diag_Master)

<

. n
Timeout °

(t_Diag_Master)

Light at
input ?

Light at
input ?

Lock stable?

MOST Network
Interface Controller

will be configured as
Slave with All
Bypass active

Set the Boundary
Descriptor = valid
value (>0x05)

Time t Diag_Master is
already expired
->t_Difference =
t_Diag_Slave -
t_Diag_Master

Start Timer
(t_Difference)

Diagnosis Ready

Figure 3-10: Behavior during ring break diagnosis in a Timing Master (part 1)

Specification Document © Copyright 1999 - 2005 MOST Cooperation
MOST Specification 05/2005 Page 133

MOST® MOST

Specification COOPERATION

Diagnosis Start

The Diagnosis Start Event will be
generated by connecting to power

No
Light atinput ?
Yes
MOST Network
Interface
Controller will be
MOST Network configured as
Interface Master
Controller will be (Light at output)
configured as
Slave with All
Bypass active
Y
V Set the Boundary
Descriptor = 0x04
Start Timer
(toiag_siave)

Start Timer
(t D\agSIave)

Yes
Lightatinput ?

No

Y

Timeout ?
(t D\agSIave)

Figure 3-11: Behavior during ring break diagnosis in a Slave (part 1)

© Copyright 1999 - 2005 MOST Cooperation

Specification Document
MOST Specification 05/2005

Page 134

MOST®

Specification

MOST

COOPERATION

Every Device

yes

Timeout
(t_Diag_Slave)

Light at ne

input ?

yes

Bypass will be
deactivated directly
after recognizing lock

no The ring is closed as soon
as the Boundary Descriptor
value in the Slave Device is

valid (> 0x05)

Lock stable
and ring closed?

Diagnosis Ready

Figure 3-12: Behavior during ring break diagnosis in a Timing Master and Slave (part 2)

Specification Document

© Copyright 1999 - 2005 MOST Cooperation
MOST Specification 05/2005 Page 135

MOST®

Specification

MOST

COOPERATION

Every Device

Start Timer
(t_restart)

v

Switch off light at
output

Timeout
(t_restart)

Timeout

yes
(t_Diag_Slave) or

Diagnosis Error Shut

(t_Diag_Master)
respectively

Light at
input ?

MOST Network
Interface Controller
will be configured as
Slave with All
Bypass active

Figure 3-13: Behavior during ring break diagnosis in a Timing Master and Slave (part 3)

Specification Document

Page 136

© Copyright 1999 - 2005 MOST Cooperation
MOST Specification 05/2005

MOST® MOST

Specification COOPERATION

3.2.3 Secondary Nodes

For some applications it can be useful to integrate two MOST Network Interface Controllers into one
device. The two nodes are called "Primary" and "Secondary" node. A detailed definition of these
names and a description of the possible structures are available in section 3.10 on page 200. A
Secondary Node does not contain any function blocks. In case of receiving any request, it returns an
error (Error Secondary Node. Please refer to section 2.3.2.5.1 on page 45). This error has the
meaning of "l am a Secondary Node only. The node responsible for me has DevicelD Oxnnnn". The
example below shows this mechanism by means of the request of System Configuration
(NetworkMaster). During Network Configuration request, the NetworkMaster asks all nodes for the
function blocks they contain. The secondary node therefore replies:

SN -> NM: NetBlock.Pos.FBlockIDs.Error (ErrorCode = 0x0A = Secondary Node,
ErrorInfo = DeviceID of Primary Node)

In the Central Registry it must be marked, which node is the Primary Node to a certain Secondary
Node. Therefore, the Central Registry must be sorted in a way, that the Secondary Node's entry
directly succeeds the entry of the Primary Node in case of a request. This does explicitly not refer to
the hardware configuration in the respective device. In a MOST device, the Primary Node can be
arranged behind the Secondary Node as well.

For completing the entries of Secondary Nodes in the Central Registry, each Secondary Node is
registered with a single Function Block (FBlock) having FBlockID.InstID = OxFC.0.

Specification Document © Copyright 1999 - 2005 MOST Cooperation
MOST Specification 05/2005 Page 137

MOST® MOST

Specification COOPERATION

3.2.4 Power Management

Power management means that the administrative function, which is above the Network Service,
wakes and shuts down the MOST network or specific devices. The power management is handled
mainly by the PowerMaster, which uses NetBlock functions for this purpose.

3.2.4.1 Waking of the Network

Waking the network is done by emitting modulated light (light on). In principle the network can be
awakened by any node. The ability of a node to wake up the network can be activated or deactivated
by the PowerMaster (e.g., in case of a critical charge status of the accumulator) in the property
AbilityToWake, which is mandatory for every NetBlock. The PowerMaster itself will usually wake the
network, for example, when there is communication on the car’s bus, or based on the status of the
vehicle (Clamp status).

Please note:

A device must only wake the network when this is initiated by the application. Failure (e.g.,
supply voltage too low, or too high) must not initiate waking of the network.
Other solutions for waking up the network have been implemented as well, such as using an
electrical wakeup line. It is up to the system integrator to choose the preferred wakeup
method. The process described here, is independent of the wakeup method.

When an application wakes the network, it calls the respective routine in the Network Service, which
switches on light at the output of the device. Every node that recognizes light at its input switches on
light at its output and initializes. In this way the light travels from node to node until the entire network
is awake.

Applic. Applic.
\ A
StartUp NetOn
v |
Net Net
Interface Interface
A
Device Device
Light on

Figure 3-14: Example (2 devices) for waking of the MOST network via light on the network

Specification Document © Copyright 1999 - 2005 MOST Cooperation
Page 138 MOST Specification 05/2005

MOST® MOST

Specification COOPERATION

3.2.4.2 Network Shutdown

Switching off the network is done on lowest level by switching off light. A device, which has switched
off light, must not switch it on again before trestart OCcurred. This applies even if it recognizes light at its
input (optical wakeup). Electrical wakeups may be latched to perform a wakeup after trestart-

All devices, except the one containing the PowerMaster, switch off light when certain errors occur
(unlock, low voltage with reset). This is done without warning the other devices by sending a
telegram.

In all other cases, only the PowerMaster switches off the network. For avoiding that devices have to
save their status to persistent memory very often, the PowerMaster implements a shutdown procedure
that has two stages. This procedure contains request and execution. For requesting, it starts method
ShutDown with parameter Query in all NetBlocks of the system. This is one of the rare cases where
a telegram is broadcasted. After that, the PowerMaster waits for tgyspena before it actually shuts down
the system. A device without any further need for communication does not respond on
ShutDown.Start(Query).

The execution is announced by the PowerMaster by starting ShutDown.Start(Execute). By this
function call, the shutdown process is started irrevocably. The devices do not reply to this call. They
prepare for shutting down (saving status) and then wait for the light to be switched off.

The PowerMaster switches off light tspupownwait @fter ShutDown.Start(Execute). This time allows to
shutdown audio output without audible side effects. If the light was not switched off within tsjaveshutdown @
slave device may switch off the light.

If a function block desires to communicate, it must notify the PowerMaster after
ShutDown.Start(Query) with ShutDown.Result (Suspend) within time tsyspens. The PowerMaster then
postpones its attempt to switch off for time tretryshutpown, before retrying to shut down. This procedure
guarantees that a device, which woke the bus in the parked vehicle, does not need to prevent the
PowerMaster from switching off the network actively (according to the current status of the vehicle).
For switching off, the PowerMaster calls the respective routine in the Network Service. The status
“light off” travels around the ring in the same way as “light on” when waking the network. After a
certain delay time tpwrswitchofelay the nodes change to sleep mode.

Specification Document © Copyright 1999 - 2005 MOST Cooperation
MOST Specification 05/2005 Page 139

MOST® MOST

Specification COOPERATION

: 1) ShutDown.Start (Query)
: 3) ShutDown.Start (Execute) :

N A
Power .
[2
NetBlock Master NetBlock 2) Net Off ?—» Applic.
\ A
4) Off Request 6) Net Off Event
v \
Net Net
Interface Interface
A
Device
Device
5) Light off

Figure 3-15: Switching off MOST Network via starting method ShutDown in every NetBlock, and
signaling to every application, and switching off light

If a device desires to wake the network directly after a shutdown, it has to wait at minimum for trestart
(running from Light Off), before it switches on light again.

1) ShutDown.Start
Y
Power 4) ShutDown.Result ——2) Net Off ?—Pp .
NetBlock Master .- (Suspend) «1-++1 NetBlock Applic.
-«——3)No!

Net Net

Interface Interface
Device Device

Figure 3-16: Prevention of switching off MOST Network via ShutDown.Result (Suspend)

Please note:

If the light is switched off during shutdown, e.g., by low voltage, long unlock or fatal error, the
PowerMaster must not wake the network for being able to finish its shutdown procedure. The
PowerMaster must regard the shutdown procedure as complete.

Specification Document © Copyright 1999 - 2005 MOST Cooperation
Page 140 MOST Specification 05/2005

MOST® MOST

Specification COOPERATION

3.2.4.3 Device Shutdown

In order to minimize power consumption on system and device level it is possible to shut down specific
MOST devices, this process is called Device Shutdown. Shutting down a device may affect the
application on a system level, avoiding such affects is handled by other mechanisms. It is optional to
support Device Shutdown.

When a device is shut down, all applications in the device may be shut down with the exception of
NetBlock, which is still active with full functionality. Also, the Device has to know the current System
State when it wakes from Device Shutdown; therefore the Network Master Shadow has to keep track
of the current System State even while the device is in Device Shutdown state.

The NetBlock.Shutdown.Start message is used to bring a device into or out of Device Shutdown.
When managing Device Shutdown, this message may be sent to one device or a group of devices, as
opposed to Network Shutdown where this message has to be broadcast. The behavior of a device
during Network Shutdown is not affected by whether the device is in Device Shutdown or not. Refer to
section 3.2.4.2 for information about Network Shutdown.

3.2.4.3.1 Performing Device Shutdown

The process of shutting down a device or a group of devices can be divided into two stages, a request
stage and an execution stage. The request stage is optional.

Request Stage (Optional)

This stage guarantees that a device is not shut down while its function blocks are communicating with
function blocks on other devices. It is also useful if the PowerMaster wants to shut down a group of
devices but only if the whole group is ready.

The PowerMaster sends Shutdown.Start(Query) to a single device or a group of devices.
The PowerMaster will wait for tgyspend to allow devices to suspend its own shut down.

A device that requires communication will respond with Shutdown.Result(Suspend).

PO N~

If a device responds to the Query, the PowerMaster will wait for treiryshudown before trying
again.

5. Steps one through four may be repeated until tsyspena €Xpires before receiving a request to
suspend the Device Shutdown process. Then the Execution stage is entered.

Execution Stage

To execute Device Shutdown, the PowerMaster starts method Shutdown with parameter
DeviceShutdown in a single device or in a group of devices.

The PowerMaster sends Shutdown.Start(DeviceShutdown).
The Device mutes any synchronous outputs.

The Device unregisters itself from notification matrices in other devices, if any.

PN~

The Device unregisters its function blocks by sending an FBlockIDs.Status() with an empty
FBlockIDList.

The NetworkMaster broadcasts the device’s invalid function blocks.

o

6. The device can shut down its application but the NetBlock has to stay active.

Specification Document © Copyright 1999 - 2005 MOST Cooperation
MOST Specification 05/2005 Page 141

MOST® MOST

Specification COOPERATION

3.2.4.3.2 Waking from Device Shutdown
The device can be woken by the PowerMaster or by the device itself.

WakeUp by PowerMaster
1. The PowerMaster sends Shutdown.Start(\WWakeFromDeviceShutdown).
2. The Device wakes its application.
3. The Device registers its own function blocks using FBlocklDs.Status(FBlockIDList).
4

When Network Master reports the new function blocks they can be used.

Internal Wakeup
1. The Device wakes its application.

2. When the System State is OK or when explicitly asked by the NetworkMaster, the device
registers its own function blocks using FBlocklIDs.Status(FBlockIDList).

3. When Network Master reports the new function blocks they can be used.

3.2.4.3.3 Persistence of Device Shutdown
The state of being in Device Shutdown is not memorized after a system restart.

3.2.4.3.4 Response when Device Shutdown is unsupported

Since Device Shutdown is optional, the NetBlock of a device that does not have support for Device
Shutdown responds to a request for Device Shutdown with ErrorCode 0x07 (parameter not available).

Specification Document © Copyright 1999 - 2005 MOST Cooperation
Page 142 MOST Specification 05/2005

MOST® MOST

Specification COOPERATION

3.2.5 Error Management
In the network the following errors may occur on the lowest level:

e Fatal Error: Error that leads to the interruption of the ring, to the breakdown of the network, or
that means the network cannot be initialized (Super- or sub-voltage, ring break, defect FOT
unit).

e Unlock: The PLL of the MOST Network Interface Controller is no longer locked. A ring break
is not necessarily the inevitable conclusion of this error.

e Network Change Event: One of the nodes in the network has activated or deactivated its all-
bypass, which means it “disappears” or “appears” as a new node.

e Voltage Low: The voltage of one or more devices is too low to maintain operation of the
NetlInterface.

For the handling of these errors, there are the following general rules:

¢ No alert communication: For keeping error management simple, robust and not error-prone,
there is no communication in case of an error.

e Local Handling Of Errors: Every device is responsible to handle every recognized error
locally. Only the NetworkMaster handles errors for the entire network.

e Securing Synchronous Signals: In opposite to the packet data area and the control channel,
there is no data securing for the synchronous area. So data transported here, is sensitive for
disturbances in case of errors. A device that recognizes an error, should immediately secure
all output signals that depend on synchronous data transfer. This applies for instance to an
audio amplifier, which has to mute its analog output signal (the one connected to the
speakers). The synchronous connections on the Network are not removed, except in case of
a fatal error or a Network Change Event, which leads to the NetworkMaster sending out
Configuration.Status(NotOK).

3.2.5.1 Handling of Light Off

If a device recognizes at its input that light was switched off, it switches off its own output immediately.
In case there is the need to wake the network again, it has to wait for tresiart. If light was switched off
without a ShutDown.Start (Execute), there may be two causes:

e Fatal error (voltage low, ring break), which is described below

e A device runs error handling (e.g., long unlock). In such a case the PowerMaster switches on
light again, if the vehicle’s status requires it. So it wakes the network in the normal way. By
that a re-initialization is done.

If light was switched off, it may be the case that it is switched on again after a short time. If the
application would shut down immediately, some devices may need a long time to return to normal
operation. Therefore the application has to be prepared for Shutdown, but has to stay active for
tpwrswitchofelay- 1T the light reappears within tpwrswichofelay, the system is re-initialized like when waking
up after sleep mode. The only difference is, that within the devices power supply, micro controller,
and operating system need not to be re-initialized.

Specification Document © Copyright 1999 - 2005 MOST Cooperation
MOST Specification 05/2005 Page 143

MOST® MOST

Specification COOPERATION

3.2.5.2 Fatal Error

A “fatal error” is a kind of error that prevents the light from being handed on in the Ring. There are
four possible reasons:

e A device (especially optical transmitter, optical transceiver, or a MOST Network Interface
Controller) has no, or an insufficient distribution voltage.

e An optical receiver is defect.
e An optical transmitter is defect.

e The optical connection between transmitter and receiver is interrupted

3.2.5.2.1 Waking

If a fatal error occurs while an application tries to wake the network, “light on” does not propagate
through the entire ring, and the Network Service in every device change to state NetInterfaceOff after
tconiig- The waking application waits for tresiart @and then tries again to wake the network. This will be
repeated up to three times and then it suspends the waking. Only the PowerMaster tries to start up
the network if required by the vehicle’s status.

3.2.5.2.2 Operation

If there is a fatal error during normal operation, “light off’ propagates through the entire ring. This is
handled as described above. In case the power status of the vehicle requires it, the PowerMaster tries
to wake the network after trestart- SO the handling of a fatal error during waking needs to be performed
(see above).

Specification Document © Copyright 1999 - 2005 MOST Cooperation
Page 144 MOST Specification 05/2005

MOST® MOST

Specification COOPERATION

3.2.5.3 Unlock

An unlock occurs when a timing Slave cannot lock onto the input signal of the PLL of the MOST
Network Interface Controller, or if a Timing Master does not receive a comprehensible signal.

One cause for this may be that two Timing Masters in one ring work against each other. This case
can be recognized only in the Timing Masters themselves.

Another cause can be that the optical signal at a node’s input is too weak, or a node opens or closes
its all-bypass. Every node downstream from the location that caused the unlock, up to the Timing
Master, recognizes the unlock. The nodes downstream of the Timing Master up to the location that
caused the unlock do not recognize the unlock. On an unlock, data errors occur. Based on its
securing mechanism, the control channel is relatively insensitive to short unlocks.

Reaction of the Network Service:

The Network Service of every device report an unlock immediately to the application by an Unlock
event. In addition to that, the length of the unlock, and the occurrence of short unlocks is checked. If
the network seems to be unstable due to long or frequent unlocks, an ErrorShutDown is performed by
the Network Service. This is reported to the application with the help of a NetOff event. Following the
context of its standard tasks, the PowerMaster tries to wake the network again after that.

Reaction on application level:

The following applies to all sinks in the system.

The application secures the synchronous signals. For example, an audio amplifier must mute as fast
as possible (refer to section 3.8.1.4). After a lock is established again (recognized by the Network
Service), the application restores its synchronous signals as fast as possible (e.g., de-mute). This
must happen only if there is no Network Change Event, where a node has closed its all-bypass and
therefore has left the network.

Reaction on NetworkMaster:

The NetworkMaster does not react on an unlock in a specific way. Both errors are stored in the error
memory in the same way as in other devices.

Specification Document © Copyright 1999 - 2005 MOST Cooperation
MOST Specification 05/2005 Page 145

MOST® MOST

Specification COOPERATION

3.2.5.4 Network Change Event

A Network Change Event (NCE) is defined as a detected change of the Maximum Position Information
transmitted cyclically on the Network.

If a device opens or closes its All Bypass, i.e. enters or leaves the Network, the Maximum Position
Information changes (except for the case when one device enters and another device leaves the
network in a very short time interval1).

Disturbance on the Maximum Position Information can occur, e.g., from an unlock.
A NCE is recognized by the Network Service in every device.

If an additional node joined the network, the new node must be integrated on system level. Therefore
SystemCommunicationlnit must run (refer to chapter 3.3.1.1.2). In order to achieve that the
NetworkMaster checks configuration again and broadcasts Configuration.Status.

If a node has left the network, the output signals that depend on synchronous data transfer must be
secured immediately. Furthermore, every node must be able to handle the case where a
communication partner is missing, and must act accordingly in a safe way. The NetworkMaster checks
configuration again and broadcasts Configuration.Status.

! Typically up to 24 ms

Specification Document © Copyright 1999 - 2005 MOST Cooperation
Page 146 MOST Specification 05/2005

MOST® MOST

Specification COOPERATION

3.2.5.5 Failure of a Function Block

It can be that single processes in a Device are hanging (but not the entire device), and that those
processes need to be restarted. In case this failure stops an entire, or even several Function Blocks
(FBlocks), the device has to un-register those function blocks in the Central Registry in the
NetworkMaster. This is done through a notification of the new status of FBlockIDs sent to the
NetworkMaster:

Device -> NM: NetBlock.RxTxLog.FBlockIDs.Status (FBlockIDList)
This tells, that only those function blocks contained in FBlockIDList are available. The NetworkMaster

updates the Central Registry and broadcasts immediately after the reception of such an
un-registration:

NM -> All: NetworkMaster.l.Configuration.Status (Control=Invalid,

DeltaFBlockIDList)
Control uns. Byte 0: NotOK
1: OK
2: Invalid
3: New
DeltaFBlockIDList List of FBlockID.InstID

A detailed description of the handling of "Control = Invalid" and "Control = New" is to be found in
sections 3.3.3.6 and 3.3.4.3.

DeltaFBlocklIDList means the list of those function blocks that are invalid. Therefore, all applications
have the required information and can terminate functions depending on the invalid function blocks.

If the failed process is ready (after being killed and re-initialized), the depending function blocks are
registered again:

Device -> NM: NetBlock.RxTxLog.FBlockIDs.Status (FBlockIDList)

The NetworkMaster registers those function blocks in the Central Registry, and broadcasts
immediately after having received the registration:

NM -> All: NetworkMaster.l.Configuration.Status (Control=New,
DeltaFBlockIDList)

Here, DeltaFBlocklIDList means the list of the new function blocks.

Please note:

In case a device, that starts up fast, has single function blocks starting up relatively slow, the
same mechanism of supplementary registration can be used. But the status message may not
be sent before the NetworkMaster has asked the device.

When the Network Master reports Central Registry updates, the DeltaFBlockList must contain a
maximum of five function blocks. This allows the message to be sent within a single telegram
(11 Bytes max.). This limitation refers to such nodes, which can handle single telegrams only.
In case more than five function blocks must be reported, several single telegrams are sent.
Refer to sections 3.3.3.6.1 and 3.3.3.6.2.

Specification Document © Copyright 1999 - 2005 MOST Cooperation
MOST Specification 05/2005 Page 147

MOST® MOST

Specification COOPERATION

3.2.5.6 “Hanging” of an Application

By implementing a watchdog in each device, a long “hanging” of the application should be avoided.
This effect is reduced to a Network Change Event (Closing of all-bypass), and an eventual second
Network Change Event (Opening of all-bypass).

Every application must be able to handle the case where one of its communication partners does not
respond, and safely terminate the parts of the program that depend on this communication.

3.2.5.7 Failure of a Network Slave Device

If a device experiences an internal failure and recovers from that by restarting, all its function blocks
must be unregistered in the Central Registry. When the Network Master announces the loss of the
function blocks through a Configuration.Status message, the device must register its function blocks
again.

The device must always wait until it is asked by the NetworkMaster, then return the empty list. The
device must not communicate until it receives a Config.Status message. If the System State is OK
(section 3.3.4.3.8), then the device must register its FBlocks.

Specification Document © Copyright 1999 - 2005 MOST Cooperation
Page 148 MOST Specification 05/2005

MOST® MOST

Specification COOPERATION

3.2.5.8 Low Voltage

The definition of voltage levels and more information can be found in section 4.7 on page 213. A too-
low supply voltage does not inevitably occur in every device at the same time and in the same
intensity. As already described, there are two limits regarding the supply voltage of a device:

Critical voltage Ug;iicar:

First, there is the limit at which the application will no longer work safely, but where communication is
still possible. Since the application does not work any longer, the output signals that depend on
synchronous data transfer must be secured. In case of a recovery, they can be restored immediately.

Low voltage U, o:

There is a second limit, where even the NetInterface no longer works reliable, so even communication
cannot be maintained.

If low voltage is reached the device is reset, then it switches off the light and switches to normal
DevicePowerOff Mode, as if it was switched off. The device stays in DevicePowerOff mode, even if
the supply voltage recovers. It is awakened either by “light on” at its input, or by the demand for
communication from its own application. It changes to mode DeviceNormalOperation via the standard
initialization process. The low voltage reset leads a device to normal behavior.

By opening all-bypass, the device indicates that it is joining the network. The other devices must then
integrate it into the system via SystemCommunicationlnit. Further signaling is not required here as
well.

U<Ucritical

Device

NormalOperation
U>Ucritical

Device StandBy

Sync Signals Mute

Netinterface Normal
Operation

Sync Signals Demute
Netinterface
NormalOperation

U>Ucritical

((Light On at receiver) U<ULow

or (Application Request))
& (U > Uccritical)
(no own initiative)

DevicePowerOff
(normal Sleep Mod¢
NetInterface PowerOff

SystemCommunicationInit

(Notification...) deleted

Figure 3-17: Behavior of a device depending on supply voltage

' Note: It is up to the system integrator to decide whether an application is powered or not.

Specification Document © Copyright 1999 - 2005 MOST Cooperation
MOST Specification 05/2005 Page 149

MOST® MOST

Specification COOPERATION

3.2.6 Over-Temperature Management

3.2.6.1 Introduction

Some components could experience malfunctions or permanent damage when exposed to
temperature conditions above their operating limits. Even though it should be the design goal of every
system that such condition is never reached during normal operation, it is still necessary to define the
system’s behavior for this worst case. This recommendation is applicable to every device, which can
monitor its own temperature and decide when to take appropriate action.

Different strategies are presented for the re-start of the system; they work independent from each
other and can even be mixed within one system, if desired.

3.2.6.2 Levels of Temperature Alert

A

o \ 0
lgNetOn \ i 4

gy //

S / -

v

App' ON ts cool ts cool
App OFF for Shutdown Wake-Up Wake-Up

Figure 3-18: Alert Levels

Figure 3-18 shows three of the four different temperature alert levels that can be identified. Starting
with the lowest one, they are:

1. Limited application functionality (not shown in the figure). Above a certain temperature, an
application may decide to limit its functionality in order to reduce power dissipation and hence
the warming up of the device. This could be done “silently” by the application or with an
appropriate notification of the application’s controller. An example is: Volume limitation in
order to reduce the power stage’s power dissipation.

Specification Document © Copyright 1999 - 2005 MOST Cooperation
Page 150 MOST Specification 05/2005

MOST® MOST

Specification COOPERATION

2. Shutdown of individual applications. If, for example, a telephone unit becomes warmer than
its maximum operating temperature (which is still below the maximum operating temperature
for the FOT unit or other components needed for MOST functionality), the device could decide
to shut down this specific application. The function block is then removed from the
CentralRegistry by sending an updated NetBlock.FBlocklDs.Status message to the
NetworkMaster.

3. If the temperature comes near the critical limit, the device should request a temperature
shutdown from the PowerMaster. This is done by broadcasting NetBlock.Shutdown.Result
with parameter 0x03 (Temperature Shutdown). The PowerMaster will then execute the
standard shutdown procedure, please refer to section 3.2.4.2. Before that, it will set the
AbilityToWake property of all devices except the one with the temperature problem to “Off”.

4. |If the critical temperature is finally reached (e.g., if the normal shutdown procedure does not
finish due to a device constantly sending NetBlock.Shutdown.Result(Suspend)), an immediate
shutdown is initiated by the device, which is in critical condition by simply switching the light
off. Since the PowerMaster is aware of the over-temperature condition (because of having
received the device’s broadcast message before), it shall avoid an immediate restart of the
network. The PowerMaster is considered to be in “over-temperature-mode”, a state that is
maintained beyond the shutdown of the system.

From these alert levels, only the following subset is mandatory: Point 4 as described above, and the
broadcasting of the message NetBlock.Shutdown.Result(0x03) by the device as described under point
3. All other measures, including the standard shutdown procedure mentioned under point 3, are
optional and can be used independently from each other.

3.2.6.3 Re-Start Behavior

After the system has been shutdown (see points 3 and 4 above), it has to stay off long enough for the
device to cool down. The temperature should sink to a level that guarantees a reasonable amount of
operation time when the system is back up again, i.e. it is not very useful to have a system that re-
starts and remains in operational state for just a minute.

There are several ways to determine when and how the system shall be re-started. Like with the alert
levels, they can be combined in several ways.

a) If the device is able to supervise its own cooling phase, it may wake up the ring when it has
cooled down.
b) The PowerMaster may decide, after a while, to try a re-start. It simply wakes up the ring.

c) The PowerMaster could be triggered to re-start the ring upon user request.

Independent of those three re-start methods, the following is mandatory for the re-start procedure:

e If the device finds that it is still above the re-start temperature threshold, it broadcasts
NetBlock.Shutdown.Result(0x03) again immediately after the NetOn state is reached. The
PowerMaster shuts down the system again (without the standard procedure).

o If at re-start the NetworkMaster reaches the state “Configuration OK”, the over-temperature
condition of the system is over and the PowerMaster resets the AbilityToWake properties of all
devices to their original state.

Specification Document © Copyright 1999 - 2005 MOST Cooperation
MOST Specification 05/2005 Page 151

MOST® MOST

Specification COOPERATION

¢ A minimum time between re-start attempts of the system shall be guaranteed so the device
has a chance to cool down. After all, a failing attempt to re-start the network will last no longer
than approx. 150ms, so if the minimum interval between such attempts is e.g., one minute, the
short phase of operation can be considered insignificant.

Note that all temperature levels (those for the alerts as well as those for re-start) are device-specific
and are handled on a device-internal basis. No central component supervises the temperature of a
device and decides for the device when it has to shutdown; this is completely at the device’s
discretion.

Specification Document © Copyright 1999 - 2005 MOST Cooperation
Page 152 MOST Specification 05/2005

MOST® MOST

Specification COOPERATION

3.3 Network Management

Network Management is the process by which the Network Master ensures secure communication
between applications over the MOST Network. This section describes the conditions that must be met
by the Network Master and the Network Slaves to enable safe Network Management. The tools used
for this process include the control of the System State and the administration of the Central Registry
as well as the Decentral Registries.

Section 3.3.1 contains general descriptions of Network Management. Detailed requirements of the
behavior of MOST devices regarding Network Management are described in sections 3.3.2 through
3.3.4. For more implementation specific information and examples refer to Appendix A.

3.3.1 General Description of Network Management

3.3.1.1 System Startup

This section describes the System Startup following the NetOn event.

3.3.1.1.1 Initialization of the Network

The Network Master is responsible for initializing the network at System Startup. It collects the system
configuration by requesting the configuration of each individual Network Slave; this is referred to as a
System Scan. The collected information is entered into the Central Registry.

The Network Master sets the System State to OK to indicate that the Central Registry is valid or
NotOK to indicate that the Central Registry is invalid. When the System State is OK, MOST devices
may communicate freely. When the System State is NotOK, communication is limited.

Setting the System State to NotOK resets the system from a network point of view, that is, any
network related information is reset in all Network Slaves. This event prevents the same collisions to
occur more than once.

The procedure by which the Network Master initializes the system depends on the availability of a
valid logical node address and a Central Registry.

e If there is no valid logical node address available at System Startup the Network Master resets
the network by setting the System State to NotOK before scanning the system.

e If there is a valid logical node address available at System Startup but no Central Registry the
Network Master starts to scan the system.

e If there is a Central Registry available at System Startup the Network Master must verify that
the Central Registry is still valid. If no mismatches are detected the Network Master sets the
System State to OK, completing the network initialization. If any mismatch is detected the
Network Master sets the System State to NotOK, clearing its Central Registry, before
scanning the system again.

The Network Master will set the System State to NotOK whenever an error is caused by a Network
Slave registration. The Network Master will continue to scan the system until there are no errors in
Network Slave registrations and the System State is set to OK. A transition to System State OK
indicates the completion of the network initialization.

Specification Document © Copyright 1999 - 2005 MOST Cooperation
MOST Specification 05/2005 Page 153

MOST® MOST

Specification COOPERATION

3.3.1.1.2 Initialization on Application Level

After the Network Master has set the System State to OK initializations that have to do with the
interacting of multiple devices on the application layer should be performed. However, initialization of
the individual applications may start earlier. The application may now initialize communication
controlled by itself. This initialization phase is referred to as “SystemCommunicationlnit”.

During SystemCommunicationlInit, e.g., Notification is established, so the application of a device may
register in the Notification Matrices of those function blocks from which it desires to get status
information.

The system must be prepared for devices connecting to or disconnecting from the network (Network
Change Event) and function blocks being activated and deactivated during runtime. In these cases,
the system must run consistently without disturbances and reinitializing phases must be as short as
possible. On a Network Change Event, parts of SystemCommunicationlnit must be run again, but
initialization must not be run completely due to the time this would take.

3.3.1.2 General Operation

3.3.1.2.1 Finding communication partners

When an application seeks a communication partner, that is, a function block; it requests the
whereabouts of the function block from the Network Master. The requesting application receives the
available InstIDs of the sought function block and the logical node addresses of the devices in which
they reside. Alternatively, if a specific function block is sought, the InstID may also be specified.

A controller device may store the information concerning its communication partners in a Decentral
Registry. The benefit of having a Decentral Registry is that the Network Slave does not have to
request the logical node address of its communication partners every time it needs to communicate.
The Decentral Registry must be deleted whenever the Network Master sets the System State to
NotOK.

3.3.1.2.2 Network Monitoring

The Network Master monitors the system for changes and errors. When a Network Change Event is
detected, the Network Master must find out if a device has entered or left the network. It scans the
network and reports any new information to all Network Slaves in the system. This way a device will
be notified if one of its communication partners is missing or if new potential communication partners
enter the system. The Network Master may be instructed to scan the system at any time by the
application.

3.3.1.2.3 Dynamic Function Block Registrations

It may happen that devices activate and deactivate function blocks at any time; these changes have to
be reported to the Network Master. The Network Master then updates the Central Registry and
informs all Network Slaves. This also applies for devices experiencing failures. If a device fails, an
NCE is detected by the Network Master, which then scans the system.

Specification Document © Copyright 1999 - 2005 MOST Cooperation
Page 154 MOST Specification 05/2005

MOST® MOST

Specification COOPERATION

3.3.2 System States

A MOST Network is in either of two System States, OK or NotOK. The System State reflects the
validity of the Central Registry. The Network Master builds and maintains the Central Registry as well
as distributes the System State to all Network Slaves.

The Network Master builds the Central Registry by collecting logical node addresses and function
block configuration from all Network Slaves. The system relies on a valid Central Registry, not only
because it contains the information used by controller devices to find their communication partners,
but also because it is crucial that a device is informed if one of its communication partners disappears.

The Network Master distributes the System State of the network to the Network Slaves by
broadcasting Configuration.Status() messages. The state diagram in Figure 3-19 shows the System
States and which events affect the states.

Neh

Configuration.Status(OK) Configuration.Status(OK)
NotOK m
(CR Invalid)
Configuration.Status(New)
OK
U (CR Valid)

Configuration.Status(NotOK) Configuration.Status(NotOK)

U Configuration.Status(Invalid)

Figure 3-19: States of the network are shown, as well as the status of the Central Registry

The network should be considered to be in a reset state directly following the broadcast of
Configuration.Status(NotOK) by the Network Master. Following this event, all devices delete any
network configuration related information they may have (e.g., logical node address, Central Registry,
Decentral Registry).

Sections 3.3.3 Network Master and 3.3.4 Network Slave describe device specific behavior in the
different System States as well as making transitions between states.

Specification Document © Copyright 1999 - 2005 MOST Cooperation
MOST Specification 05/2005 Page 155

MOST® MOST

Specification COOPERATION

3.3.2.1 System State NotOK

System State NotOK is always entered after a NetOn event. In this state, communication must not
take place except for special applications that do not rely on a valid registry, in particular the System
Scan performed by the NetworkMaster and other, optional features that may be done on a per-device,
position-dependant basis. The system can fall back into System State NotOK at any time by
declaration of the Network Master.

Also, the system is regarded as being in System State NotOK after NetBlock.Shutdown.Start(Execute)
has been broadcast. An optional delay may be specified on a per-system basis between the
broadcast of this message and the point in time where the change of state becomes effective. The
logical node addresses are not re-calculated upon this implicit change of state; this is only done when
the message Configuration.Status(NotOK) has been received.

Event Transition to Cause Effect
Configuration.Status()
NotOK No transition - Un-initialized NodeAddress in Network Configuration Reset:
Network Master - Clear Central Registry
- Erroneous registration by network | - Clear Decentral Registries
slave. - Recalculate NodeAddress
OK SystemState OK - Central Registry verified - Network configuration available
in Central Registry
- Set up Decentral Registries,
where necessary.
- (Re-) initialize applications.

Table 3-10: Events in System State NotOK (refer to Figure 3-19)

Specification Document © Copyright 1999 - 2005 MOST Cooperation
Page 156 MOST Specification 05/2005

MOST®

Specification

MOST

COOPERATION

3.3.2.2 System State OK

While in System State OK, the Central Registry is valid. So the exact set of function blocks in the
system, each with its attributes InstID and DevicelD, is defined. Therefore, application communication
(i.e. messages with FBlockIDs other than NetBlock or NetworkMaster are allowed) may take place on
control and asynchronous channels. All the dynamic communication on application level within the
distributed system should be done only in System State OK.

Event

Configuration.Status()

Transition to

Cause

Effect

NotOK SystemState NotOK | - Erroneous registration by network Network Configuration Reset:
slave. - Clear Central Registry
- Clear Decentral Registries
- Recalculate NodeAddress
OK No transition - Large update to the Central - Clear Decentral Registries
Registry
New No transition - New FBlocks are available - Notify application
Invalid No transition - FBlocks were removed - Notify application

Table 3-11: Events in System State OK (refer to Figure 3-19)

Table 3-11 shows the effects of a Configuration.Status(NotOK) event in System State OK from a

Network Management point of view.
devices:

Empty notification lists.

In addition, the following tasks have to be performed by all

Destroy all windows on LongArrays.

Every function block containing synchronous sinks: set the Mute property to "ON" for all sinks

and disconnect them.

Every function block containing synchronous sources: All sources must route zeroes (signal
mute) to its channels for a time fcieanchannes: After time tgeanchanners all synchronous sources
must de-allocate the channels they have allocated and stop routing data to the network.

The Connection Manager must delete its SyncConnectionTable.

Specification Document

© Copyright 1999 - 2005 MOST Cooperation

MOST Specification 05/2005

Page 157

MOST® MOST

Specification COOPERATION

3.3.3 Network Master

The device that contains the NetworkMaster function block is referred to as the Network Master.
There must be one, and only one, Network Master in a MOST Network.

The Network Master controls the System State and administrates the Central Registry. The Network
Master monitors the network for certain events and continuously manages incoming information from
Network Slaves about their current function block configuration and whenever necessary informs all
Network Slaves about updates to the Central Registry.

3.3.3.1 Setting the System State

The Network Master distributes the System State by broadcasting Configuration.Status messages.
More information about the different System States and Configuration.Status messages is available in
section 3.3.2.

3.3.3.1.1 Setting the System State to OK

By setting the System State to OK, the Network Master confirms the validity of the Central Registry.
Therefore, before setting the System State to OK, the Network Master must make sure that all
functional addresses are unique in the system (section 2.3.2.3).

The Network Master must do the following when setting the System State to OK:
1. Broadcast Configuration.Status(OK).
2. Trigger initialization of applications in own device.

3. Continue to maintain the Central Registry.

3.3.3.1.2 Setting the System State to NotOK (Network Reset)
By broadcasting Configuration.Status(NotOK), the Network Master resets the system (from a network
point of view). Note that this does not necessarily imply a state change, as described in section 3.3.2.
The Network Master must do the following when setting the System State to NotOK:

1. Broadcast Configuration.Status(NotOK).

2. Clear the Central Registry.

3. Derive and set the new logical node address (section 3.4.1).

4

Wait a time twaiseforescan after Configuration.Status(NotOk) was broadcasted and perform a
System Scan (section 3.3.3.4).

Specification Document © Copyright 1999 - 2005 MOST Cooperation
Page 158 MOST Specification 05/2005

MOST® MOST

Specification COOPERATION

3.3.3.2 Central Registry

The Network Master generates the Central Registry during the initialization of the network and it
continues to administrate it until Network Shutdown (section 3.2.4.2). The Central Registry is an
image of the physical and logical system configuration. It contains the logical node address and the
respective function blocks of each device:

Rx/TxLog Rx/TxPos FBlockID InstID

0x0100 0 AudioDiskPlayer 1
NetworkMaster 10
ConnectionMaster 1

0x0101 1 AudioDiskPlayer 2

0x0102 2 AM/FMTuner 1
AudioTapeRecorder 1

0x0103 3 AudioAmplifier 2

Etc.

MaxNode MaxNode HumanMachinelnterface 1

Table 3-12: Example of a Central Registry

3.3.3.2.1 Purpose

The Central Registry is used when the Network Master checks the system configuration and when
devices are searching for communication partners or their physical addresses.

3.3.3.2.2 Contents

The Central Registry must contain the logical node address and the respective functional addresses
(combination of FBlocks and InstIDs) of the function blocks in each responding MOST device. This
information must be made available to all Network Slaves.

3.3.3.2.3 Persistence of the Central Registry

It is optional to store the Central Registry between system runs; however, the Network Master may
store the Central Registry only after Network Shutdown in its proper form (section 3.2.4.2).

3.3.3.2.4 Responsibility

Any new information gained regarding the system configuration must be entered into the Central
Registry and distributed to all Network Slaves as described in section 3.3.3.6.

The Network Master must only start supervising and store errors for those Network Slaves, that have
answered requests and which are registered in the Central Registry.

3.3.3.2.5 Responding to Requests for Information from the Central Registry

The Network Master must respond to requests for CentralRegistry.Get() from the Network Slaves
while the System State is OK. This is described in section 2.3.7.

Specification Document © Copyright 1999 - 2005 MOST Cooperation
MOST Specification 05/2005 Page 159

MOST® MOST

Specification COOPERATION

3.3.3.2.6 Secondary Nodes

In the Central Registry it must be marked, which node is the Primary Node to a certain Secondary
Node. The Central Registry must be sorted in such a way, that the entry of a Secondary Node directly
succeeds the entry of the Primary Node.

For completing the entries of Secondary Nodes in the Central Registry, each Secondary Node is
registered with a single function block having FBlockID.InstID = OxFC.0.

Note that there may be more than one secondary node in a system. This is the sole exception to the
rule of unambiguousness of the entries in the Central Registry. Secondary Nodes are described in
section 3.2.3.

3.3.3.3 Specific Behavior During System Startup

After the NetOn event the Network Master must initialize the system. This process depends on the
availability of a valid" logical node address and a Central Registry.

3.3.3.3.1 Valid Logical Node Address Not Available

If the Network Master does not have a valid logical node address available at System Startup it
assumes that the entire system must be re-initialized. The Network Master must set the System State
to NotOK (section 3.3.3.1.2) and then start a System Scan (section 3.3.3.4).

3.3.3.3.2 Valid Logical Node Address Available but No Central Registry

If the Network Master has a valid logical node address but no Central Registry available at System
Startup, it must restore its logical node address and then start a System Scan (section 3.3.3.4).

3.3.3.3.3 Valid Logical Node Address and a Central Registry Available
If the Network Master has a valid logical node address and a Central Registry available at System

Startup, it must restore its logical node address and then verify that the Central Registry is still valid.
This procedure is referred to as a Verification Scan (section 3.3.3.8).

3.3.3.3.4 Stable Network

The NetworkMaster should wait a time tywaigeforescan DEfOre scanning the system for the first time. This
latency time allows the system to stabilize after NetOn event. This latency time must not exceed
tWaitAﬂerNCE-

' A valid logical node address is any address within the dynamic or static address ranges as defined in
section 3.1.5.1.[0]

Specification Document © Copyright 1999 - 2005 MOST Cooperation
Page 160 MOST Specification 05/2005

MOST® MOST

Specification COOPERATION

3.3.3.4 Scanning the System (System Scan)

The Network Master scans the system at System Startup and after a Network Change Event (NCE). It
may also be instructed to scan the system at any other time.

The Network Master scans the system by requesting the function block configuration of each device.
The responses from the Network Slaves are interpreted as described in section 3.3.3.5. Any
information gained concerning the configuration of the network must be written to the Central Registry
and reported to all Network Slaves as described in section 3.3.3.6.

3.3.3.4.1 Configuration Request Description

During a network scan, the Network Master requests NetBlock.FBlocklDs.Get() from each Network
Slave.

3.3.3.4.2 Addressing

The Network Master scans the system by node position addressing. The logical node address of the
requested Network Slave is contained in the response message.

3.3.3.4.3 Non Responding Network Slaves

The Network Master must wait until the expiration of twaitroranswer fOr a reply from a Network Slave. The
Network Master must send another request to the Network Slave as described in section 3.3.3.4.4.

3.3.3.4.4 Retries of Non Responding Network Slaves

When a Network Slave does not respond to a request, the Network Master must try again after
tpelayCfgrequestt OF tDelayCigRequestz- IDelaycigrequestt 1S Used for the first 20 request attempts after entering
NetinterfaceNormalOperation, after that tpejaycrgrequest2 IS Used.

Refer to section 3.9 for more information about timers.

3.3.3.4.5 Network Slave Continuous cause for System State NotOK

The Network Master should ignore a Network Slave which has caused the Network Master to
broadcast Configuration.Status(NotOK) three times in succession. The Network Master should ignore
the Network Slave until the next NCE or the next System Startup.

3.3.3.4.6 Duration of System Scanning

The Network Master must continue to scan the system until all Network Slaves have answered the
requests. Refer also to section 3.3.3.4.4.

3.3.3.4.7 Reporting the Results of a System Scan without Errors

The Network Master must report the result of the System Scan if it has any new information to
distribute, such as a change in System State or changes in the function block configuration of one or
more Network Slaves. Refer to sections 3.3.3.1 and 3.3.3.6.

Specification Document © Copyright 1999 - 2005 MOST Cooperation
MOST Specification 05/2005 Page 161

MOST® MOST

Specification COOPERATION

3.3.3.5 Invalid Registration Descriptions

The Network Master interprets the incoming registrations and determines if the registration is
accepted. The following are considered to be invalid registrations, but all are not considered
erroneous since some may be corrected by the Network Master.

3.3.3.5.1 Une-initialized Logical Node Address

If any Network Slave, at any time, registers an un-initialized logical node address (section 3.1.5.1), the
Network Master must set the System State to NotOK (section 3.3.3.1.2), interrupting any ongoing
System Scan.

3.3.3.5.2 Invalid Logical Node Address

When the Network Master receives a registration from a Network Slave, in which its logical node
address is outside of the specified address range, the Network Master must set the System State to
NotOK (section 3.3.3.1.2), interrupting any ongoing System Scan.

Refer to section 3.4.1 for more information about the valid address range.

3.3.3.5.3 Duplicate Logical Node Addresses

When the Network Master receives a registration from a Network Slave, in which its logical node
address has already been registered by another Network Slave, the Network Master must set the
System State to NotOK (section 3.3.3.1.2), interrupting any ongoing System Scan.

3.3.3.5.4 Duplicate InstID Registrations

The Network Master is responsible for the uniqueness of functional addresses (combination of
FBlockiDs and InstID) within the entire system. The Network Master must try to resolve the issue of
two or more Network Slaves registering identical functional addresses.

The Network Master decides a new InstID for the last registered function block. It then sets the new
InstID in the corresponding Network Slave. If the new InstID was accepted by the Network Slave, the
Network Master enters the new value into the Central Registry. The Network Master must inform all
Network Slave as described in section 3.3.3.6 or by ultimately setting the System State to OK.

If the request to change the InstID of a conflicting function block is not successful, the Network Master
must not include the function block into the Central Registry.

3.3.3.5.5 Error Response

A Network Slave that answers a request from the Network Master with an error must be treated as a
non-responding Network Slave (section 3.3.3.4.4). The exception to this rule is the correct response
of a Secondary Node (section 3.2.3).

Specification Document © Copyright 1999 - 2005 MOST Cooperation
Page 162 MOST Specification 05/2005

MOST® MOST

Specification COOPERATION

3.3.3.6 Updates to the Central Registry

The Network Master must inform all Network Slaves about changes of the system configuration. This
information may become available during a System Scan or as Network Slaves make additional
registrations, which are not requested by the Network Master.

This section describes how the Network Master handles changes to the system configuration while in
System State OK.

3.3.3.6.1 Disappearing Function Blocks in System State OK

If the Network Master receives a registration from a Network Slave in which there is one or more
function blocks missing compared to the last registration from the same Network Slave, the Network
Master must update the Central Registry and inform all Network Slaves about the missing function
blocks. This is done by broadcasting:

Configuration.Status(Invalid, DeltaFBlockIDList)

The DeltaFBlockIDList parameter is a list of the previously registered but now invalid function blocks.
The DeltaFBlockIDList must only contain five function blocks, if there are more than five invalid
function blocks, several single messages must be sent.

When one or more function blocks have disappeared the Network Master should inform all Network
Slaves about the missing function blocks as quickly as possible, even if this information is gained
while scanning the network.

3.3.3.6.2 Appearing Function Blocks in System State OK

If the Network Master receives a registration from a Network Slave in which there is one or more
additional function blocks compared to the last registration from the same Network Slave, the Network
Master must update the Central Registry and inform all Network Slaves about the new function block.
This is done by broadcasting:

Configuration.Status(New, DeltaFBlockIDList)

The DeltaFBlockIDList parameter is a list of the new function blocks. The DeltaFBlockIDList must only
contain five function blocks, if there are more than five new function blocks, several single messages
must be sent.

If this information is gained while scanning the network, the Network Master may continue to scan the
system before it informs all Network Slaves.

3.3.3.6.3 System scan without any change in Central Registry

The Network Master shall broadcast a Configuration.Status(New) with an empty list when a network
scan that was triggered by an NCE did not detect any changes to the registry.

3.3.3.6.4 Large Updates to the Central Registry in System State OK

If the Network Master receives registrations, which result in large updates to the Central Registry, it
either broadcasts the respective sequence of New and Invalid messages or just a
Configuration.Status(OK). Both methods indicate to the Network Slaves that there is a new, updated
Central Registry available. The latter method requires the Network Slaves to fetch the differences
themselves.

3.3.3.6.5 Non-responding Devices in System State OK

If a Network Slave, which has registered in the Central Registry since startup, does not respond to the
request before twairoranswer €Xpires, the Network Master removes the Network Slave from the Central
Registry and informs all Network Slaves as described in section 3.3.3.6.1.

Specification Document © Copyright 1999 - 2005 MOST Cooperation
MOST Specification 05/2005 Page 163

MOST® MOST

Specification COOPERATION

3.3.3.7 Miscellaneous Network Master Requirements

3.3.3.7.1 Network Change Event (NCE)

When an NCE is detected, the Network Master must start a complete System Scan (section 3.3.3.4)
after twaitarernce- This also applies to a Verification Scan at System Startup (section 3.3.3.3). Any scan
in progress when the NCE is detected must be interrupted and restarted.

3.3.3.7.2 Positioning of the Function Block NetworkMaster in the MOST Network

The NetworkMaster function block must be located in a MOST device with a node position address
such that it fulfills the requirement of typrpeiay (refer to section 3.9). The NetworkMaster function block
is normally located in the same MOST device as the TimingMaster.

3.3.3.8 Verifying the Central Registry at System Startup (Verification Scan)

The Verification Scan is only performed if there is a Central Registry available at System Startup. The
Network Master performs a Verification Scan to verify that the Central Registry is still valid, that is, it is
a valid representation of the current system configuration. The Verification Scan is basically a normal
System Scan (section 3.3.3.4) with the difference that all responses from the Network Slaves have to
match the Central Registry exactly.

The Verification Scan finishes and the System State is set to OK when the Network Master has
requested all Network Slaves (ignoring nodes that do not respond) and the received registrations are
without differences to the Central Registry (logical node address and contained function blocks).

The Verification Scan finishes and the System State is set to NotOK if any registration does not match
the buffered Central Registry. The Network Master must perform a normal System Scan after setting
the System State to NotOK.

Note that Missing Devices are tolerated during a Verification Scan (section 3.3.3.8.1).

3.3.3.8.1 Missing Devices

A Missing Device is a non-responding Network Slave (section 3.3.3.4.3) that is available in the
buffered Central Registry but has not replied to any requests from the Network Master since startup;
therefore, its existence in the system cannot be confirmed.

A Network Slave is considered missing if it does not respond to a request from the Network Master
before the expiration of twatroranswer during a Verification Scan. When the Network Slave registers
correctly it is no longer considered missing and is entered in the Central Registry.

3.3.3.8.1.1 Requesting Missing Devices

If there is a Missing Device in the system, the Network Master must try to request the Missing Device
again after tpejaycigrequestt OF tDelayCigrequestz N@S expired. tpeaycigrequestt iS Used for the first 20 request
attempts after entering NetInterfaceNormalOperation, after that tpejaycigrequestz i1 Used. The Network
Master must continue to do so until the Network Slave has responded.

Refer to section 3.9 for more information about timers.

Specification Document © Copyright 1999 - 2005 MOST Cooperation
Page 164 MOST Specification 05/2005

MOST® MOST

Specification COOPERATION

3.3.3.8.1.2 Matching Response of Missing Device

When a Missing Device registers and the registration matches the registration in the buffered Central
Registry the Network Master must distribute this information as a change in the system configuration
(section 3.3.3.6).

3.3.3.8.1.3 Non-matching Response of Missing Device

When a Missing Device makes a registration and the registration does not match the Central Registry
exactly, the Network Master must change the previous entry and distribute the new information as a
change in the system configuration (section 3.3.3.6).

3.3.3.8.1.4 Receiving a Central Registry Request for a Missing Function Block

The Network Master must only search the verified entries in the Central Registry if a Network Slave
requests the whereabouts of a communication partner (section 3.3.1.2.1). This means that the
function blocks of a Missing Device must not be reported, instead an error code must be returned (see
section 2.3.7).

Specification Document © Copyright 1999 - 2005 MOST Cooperation
MOST Specification 05/2005 Page 165

MOST® MOST

Specification COOPERATION

3.3.4 Network Slave

All devices that do not contain the NetworkMaster function block are called Network Slaves. A
Network Slave must keep the Network Master informed about its current function block configuration.

3.3.4.1 Decentral Registry

Devices that control other devices should build a Decentral Registry in which it registers its
communication partners. A Decentral Registry contains the functional addresses and the respective
logical node address:

Functional Address Device Containing the FBlock
(FBlocklID.InstID) (Logical Node Address = DevicelD)
AudioAmplifier.1 0x0105

AudioAmplifier.2 0x0103

AM/FMTuner.1 0x0107

AudioDiskPlayer.1 0x0107

Table 3-13: Example of a Decentral Registry

3.3.4.1.1 Building a Decentral Registry

The information stored in the Decentral Registry is gained from the Central Registry. The Decentral
Registries are only re-built on demand; that is, not directly following a transition to System State OK.

3.3.4.1.2 Updating the Decentral Registry

The function block entries stored in the Decentral Registry must match the entries of the respective
function block in the Central Registry. When the Network Master informs of updates to the Central
Registry; the Decentral Registry must be updated accordingly for the registered function blocks.

3.3.4.1.3 Deleting the Decentral Registry

The Decentral Registry must be cleared when the Network Master broadcasts
Configuration.Status(NotOK) and whenever the device is removed from power.

3.3.4.1.4 Persistence of the Decentral Registry

It is optional to store the Decentral Registry between system runs; however, a Network Slave may
store the Decentral Registry only after Network Shutdown in its proper form (section 3.2.4.2).

Specification Document © Copyright 1999 - 2005 MOST Cooperation
Page 166 MOST Specification 05/2005

MOST® MOST

Specification COOPERATION

3.3.4.2 Specific Startup Behavior

Following the NetOn event the Network Slave initializes its logical node address and services requests
from the Network Master.

3.3.4.2.1 Behavior When a Valid Logical Node Address is Not Available at System Startup

If the Network Slave does not have valid' logical node address available at System Startup, it must set
its logical node address to the value of an uninitialized logical node address (section 3.1.5.1) and
services requests from the Network Master until the Network Master sets the System State.

3.3.4.2.2 Behavior When a Valid Logical Node Address is Available at System Startup

If the Network Slave has a valid' logical node address stored from the previous system run, it uses
that logical node address and services requests from the Network Master until the Network Master
sets the System State.

3.3.4.2.3 Deriving the Logical Node Address of the Network Master

The logical node address of the Network Master must be derived from the Configuration.Status
message at each System Startup.

' A valid logical node address is any address within the dynamic or static address ranges as defined in
section 3.1.5.1.

Specification Document © Copyright 1999 - 2005 MOST Cooperation
MOST Specification 05/2005 Page 167

MOST® MOST

Specification COOPERATION

3.3.4.3 Normal Operation of the Network Slave

3.3.4.3.1 Behavior in System State OK

A Network Slave may communicate freely while the System State is OK.

3.3.4.3.2 Behavior in System State NotOK

While the System State is NotOK a Network Slave must not initiate any communication except for
special applications that do not rely on a valid Central Registry such as optional features that can be
done on a per-device, position-dependant basis.

A Network Slave must not send a NetBlock.FBlocklDs.Status(FBlockIDList) message in System State
NotOK without being requested explicitly by the NetworkMaster.

3.3.4.3.3 Responding to Configuration Requests by the Network Master

The Network Slave responds to requests for function block configuration from the Network Master at
all times, regardless of the current System State. The response must be sent before the expiration of

tAnswer-

The Network Slave must report all function blocks that are currently active from a network point of
view. The Network Slave must not include NetBlock nor function block EnhancedTestability when
reporting its function block configuration. If the Network Slave does not have any active function
blocks it must respond with an empty FBlockIDList.

3.3.4.3.4 Reporting Configuration Changes to the Network Master

When the function block configuration of a Network Slave changes, it must report this change to the
Network Master; however, it must not do so if the current System State is NotOK (section 3.3.4.3.2).

3.3.4.3.5 Failure of a Function Block in a Network Slave

This behavior is described in section 3.2.5.5.

3.3.4.3.6 Failure of a Network Slave Device

This behavior is described in section 3.2.5.7.

3.3.4.3.7 Unknown System State

If the Network Slave does not know the current System State, it must assume that the System State is
NotOK. For determining of system state refer to section 3.3.4.3.8.

3.3.4.3.8 Determining the System State

The current System State must be determined from the Configuration.Status message, which is
broadcasted by the Network Master. The Config.Status (NotOK) implies the system status being
NotOK. All other Config.Status messages imply the system state is OK e.qg,
Config.Status(Ok/New/Invalid/New,<empty>/Invalid,<empty>).

Specification Document © Copyright 1999 - 2005 MOST Cooperation
Page 168 MOST Specification 05/2005

MOST® MOST

Specification COOPERATION

3.3.4.3.9 Finding Communication Partners

The Central Registry must be used if the application of a device seeks a logical node address. Note
that this must be done only if the information is not already available in a Decentral Registry (section
3.3.4.1).

3.3.4.3.10 Reaction to Configuration.Status(OK) When in System State NotOK

When the Network Master sets the System State to OK the Network Slave:
1. Uses its current Decentral Registry or rebuilds a Decentral Registry when necessary.
2. (Re-)initializes the application.

The System State is set to OK. For additional information, refer to section 3.3.2.

3.3.4.3.11 Reaction to Configuration.Status(OK) When in System State OK

The Network Master sends this message to inform all Network Slaves that there is a large update to
the Central Registry. All Network Slaves must:

1. Clear any Decentral Registry.
2. Rebuild a Decentral Registry when necessary.

3. The application must secure all synchronous data associated with any disappearing function
blocks.

The System State remains in OK. For additional information, refer to section 3.3.2.

3.3.4.3.12 Reaction to Configuration.Status(NotOK) when in System State NotOK

The Network Master sends this message to reset all Network Slaves from a network point of view. All
Network Slaves must:

1. Clear any Decentral Registry.
2. Derive and set the new logical node address (section 3.4.1).

The System State remains in NotOK. For additional information, refer to section 3.3.2.

3.3.4.3.13 Reaction to Configuration.Status(NotOK) When in System State OK
When the Network Master sets the System State to NotOK the Network Slave must:
Clear any Decentral Registry.
Derive and set the new logical node address (section 3.4.1).

1

2

3. Empty notification lists.

4. Destroy all windows on LongArrays.
5

Every function block containing synchronous sinks: set the Mute property to "ON" for all sinks
and disconnect them.

6. Every function block containing synchronous sources: All sources must route zeroes (signal
mute) to its channels for a time fcieanchannets: After time tcieanchanners all synchronous sources
must de-allocate the channels they have allocated and stop routing data to the network.

7. Service requests from the Network Master while waiting for the System State to be set to OK.

The System State is set to NotOK. For additional information, refer to section 3.3.2.

Specification Document © Copyright 1999 - 2005 MOST Cooperation
MOST Specification 05/2005 Page 169

MOST® MOST

Specification COOPERATION

3.3.4.3.14 Reaction to Configuration.Status(New)

One or more function blocks have entered the system and the Central Registry has been updated with
the function blocks supplied in the message. These function blocks should be added to the Decentral
Registry, if they are used by the device.

This message is only sent in System State OK. The System State remains in OK. For additional
information, refer to section 3.3.2.

3.3.4.3.15 Reaction to Configuration.Status(Invalid)

One or more function blocks have left the system and the function blocks supplied in the message
have been removed from the Central Registry. These function blocks have to be removed from the
Decentral Registry if entered. The application must secure any synchronous data associated with the
disappearing function block.

This message is only sent in System State OK. The System State remains in OK. For additional
information, refer to section 3.3.2.

Specification Document © Copyright 1999 - 2005 MOST Cooperation
Page 170 MOST Specification 05/2005

MOST® MOST

Specification COOPERATION

3.4 Accessing Control Channel

3.4.1 Addressing

In a MOST network, nodes in a ring are addressed. The MOST Network Interface Controller provides
five different types of addresses, which are described below.

Internal Node Communication Address
This address is reserved for internal communication in a node

Node Position Address (Rx/TxPos)

The Node Position Address is made up by the physical position of the MOST Network
Interface Controller. The Node Position Address is called RxPos for a receiving node, and
TxPos for a transmitting node.

Logical Node Address (Rx/TxLog)
User definable address. It must be unique in the system, and is called RxLog for receiving
nodes and TxLog for transmitting nodes.

Group address
Provides access to a group of devices.

Broadcast address
All devices.

Addressing is done in the following way:

Node Position Address:

A node position address is unique by definition, but it has the disadvantage that the receiving
MOST Network Interface Controller does not report the sender's node position address, but
the sender's logical node address. This happens only when using node position addressing.
For this reason, node position addressing is not used under normal operation conditions. It is
used by the NetworkMaster only for administrative tasks, such as during initialization. A node
position address can be determined using the NodePositionAddress function in the
NetBlock. It consists of an offset plus the physical position value:

Rx/TxPos = 0x0400 + Pos

Pos = 0 for Timing Master
Pos = 1 for first device in ring...

Logical Node Address:

Logical node addressing is used by all nodes to address a single node. The section below
describes the default procedure for assigning logical node addresses.

A logical node address must be unique even if there are multiple devices of the same type.
Therefore, it is derived from the unique node position address. During initialization of the
network, the logical node address is calculated by each device as follows:

Rx/TxLog = 0x0100 + Pos

Specification Document © Copyright 1999 - 2005 MOST Cooperation

MOST Specification 05/2005 Page 171

MOST® MOST

Specification COOPERATION

The device containing the Timing Master is located at physical position zero; it will have the
logical node address 0x0100. A device at position five in the ring will have address 0x0105.

Another approach is to assign certain address ranges with respect to the functionality of
devices. That means, for example, that the first video display module in a network gets
address 0x0200, the second 0x0201, etc., while the first active amplifier gets address 0x0188.

The logical node address can be requested from the function NodeAddress in the NetBlock.

The same logical node address must be used between two successive system runs unless the
device is removed from power. If the device is removed from power it is optional to store the
logical node address. After first power up, the logical node address is normally set to OxFFFF
(refer to sections 3.3.3.3 and 3.3.4.2) but it may also be set to a predefined system specific
value.

Group Address:

The group address can be requested from function GroupAddress in the NetBlock, it can be
modified using this function if required. The default procedure for deriving a group address is
to take the FBIlockID of the function block that is most characteristic for the device:

GroupAddress = 0x0300 + FBlocklID

The function block (FBlockID) that is reported first in case of a request for the FBlockIDs is
typically the most descriptive for the device.

Another approach for example, is that the system integrator may choose to use a hard coded
group address for the whole system, i.e. that each device comes up with the same group
address.

Groups can be built dynamically by modifying group addresses.
The group address is stored in unbuffered RAM, so it is lost if the device loses power for some

time. If the device stays powered, the group address is kept. In case power gets lost, the
default value (FBlockID) must be restored.

Broadcast Address:

Broadcast addressing requires a great deal of system resources and therefore should be used
for administrative tasks only.

FUNCTIONS
FktiD OPType | Sender Receiver Explanation
NodePositionAd | Get Controller NetBlock Requesting Node Position Address
dress
Status NetBlock Controller Answer
NodeAddress Get Controller NetBlock Requesting Logical Node Address
Status NetBlock Controller Answer
GroupAddress Get Controller NetBlock Requesting Group Address
Status NetBlock Controller Answer
Set Controller NetBlock Setting Group Address
Table 3-14: Functions in NetBlock that handle addresses
Specification Document © Copyright 1999 - 2005 MOST Cooperation

Page 172

MOST Specification 05/2005

MOST® MOST

Specification COOPERATION

3.4.2 Assigning Priority Levels

Despite the high capacity of the control channel, temporary overload situations are possible, for
example, during system initialization. Nevertheless, it must be possible to send important messages in
that case. To do this, a fair arbitration mechanism is implemented in the MOST Network Interface
Controller. For each control message a priority level can be assigned (range 0x00, ..., 0xOF with value
0x00 = lowest priority).

3.4.3 Low Level Retries

In case the sending of a control message is not successful, the MOST Network Interface Controller
can re-send the message automatically. Registers specify the number of retries and the delay
between the retries. Typically, these values should not be changed, however they can be modified to
fine tune the system.

3.4.4 High Level Retries

High Level Retries are not planned at this time, since the expenditure in software development would
be too great for the expected results. All devices have to safeguard the ability to accept messages
within the interval of time given by the low level retries.

Specification Document © Copyright 1999 - 2005 MOST Cooperation
MOST Specification 05/2005 Page 173

MOST® MOST

Specification COOPERATION

3.4.5 Basics for Automatic Adding of Physical Address

Since applications know only functional but not physical addresses, a protocol that is transported must
be complemented by the physical address (DevicelD). There are two possible ways to achieve this.

One way is when the application answers a request. In this case it already has the DevicelD of the
target node because it was reported during the request. The other way is when the application is
sending a protocol and does not know the DevicelD of the target. In this case it sets the DevicelD to
OxFFFF. The ID is complemented by the Network Service and inserted into the MOST telegram as
TxAdr. Refer also to sections 3.3.3.2 and 3.3.4.1 for information regarding the Central Registry and
the Decentral Registries respectively.

Please note:
When seeking the logical node address of a communication partner, a device performs the
following flow:

Need for sending an
application message

Logical Node yes
Address of partner
available in De-central
Registry

no

Request Logical
Node Address of
partner from Central
Registry

yes)
Store adress in De-

Logical Node Address of
central registry.

partner found?

 J

Error! Report to
application

Send message

End

Figure 3-20: Seeking the logical address of a communication partner

Specification Document © Copyright 1999 - 2005 MOST Cooperation
Page 174 MOST Specification 05/2005

MOST® MOST

Specification COOPERATION

3.4.6 Handling Overload in a Message Sink

The MOST Network Interface Controller informs the sender’'s Network Service by a NAK error
message indicating that the receiving node has rejected a telegram although the low level retries were
used. This is an indicator for a momentary overload, or a defect. The Network Service passes the
NAK error message through to the application, which has to decide what needs to be done (retry,
reject, postpone). The error is stored as Error_NAK.

If that telegram belongs to a connection where data is sent continuously from a sender to a receiver,
an optional mechanism can be implemented, which adapts the telegram transfer rate to the speed of
the data sink. A simple mechanism may look like this:

Adapting transfer rate
in connections

.

A

Sending a telegram

>

Telegram

Retry telegram?

rejected?
No
Yy
No
Last Telegram Yes Postpone
processed? message
Yes P
A \— Reject entire message
End

Figure 3-21: Possible mechanism to adapt transfer rates to the speed of a data sink

It is assumed here, that errors due to incorrect address, or CRC error are handled “on top” of that
mechanism. “Message” refers to the entire amount of data to be sent. A telegram is that portion of
data, which can be transported on the Control Channel. It transports a part of the entire message.
Rejecting a telegram means, that the target node could not process it due to an occupied receive
buffer. In that case, the MOST Network Interface Controller has already run its low level retries. Now
the application has three selections:

1.) The telegram can be sent again, thus having additional low level retries available.
2.) The entire message can be rejected, e.g., because it is no longer relevant.

3.) The entire message can be postponed, i.e., sent later.

Specification Document © Copyright 1999 - 2005 MOST Cooperation
MOST Specification 05/2005 Page 175

MOST® MOST

Specification COOPERATION

3.4.7 MOST Message Services

3.4.7.1 Control Message Service

Via the MOST Network Interface Controller, MOST telegrams can be sent and received which consist
of a sender or receiver address respectively (Rx/TxAdr), and a maximum number of 17 data Bytes.

Data area of MOST Network Interface Controller = 17 Byte

16 Bit
Rx/TxAdr

The Network Service provides a mechanism, which is called control message service (CMS). It
handles the setting and reading of the registers of the MOST Network Interface Controller.
3.4.7.2 Application Message Service (AMS) and Application Protocols

MOST Network Service provides three different types of transmissions via the control channel. Two of
them are mandatory for each device:

Control Control
Channel Channel

Application Message Service MOST
(Single + Segmented) High
Protocol

Control Message Service

Network Service

Figure 3-22: Network Service: Services for control channel

e Single Transfer: Data packets up to 12 Bytes are transmitted in a single telegram.

e Segmented Transfer: Commands and status messages with a length greater than 12 Bytes
are transported by multiple telegrams. These segmented transfers have a maximum length of
65536 Bytes.

Specification Document © Copyright 1999 - 2005 MOST Cooperation
Page 176 MOST Specification 05/2005

MOST® MOST

Specification COOPERATION

Single as well as segmented transfers are based on the application message service (AMS), which is
mandatory for all MOST Network Services. In addition to that, a third transmission procedure is
defined:

e MOST High Protocol: For connections, that is, the transmission of data streams or the
transmission of larger data packets, a higher transport protocol, the MOST High Protocol can
be used, which is derived from the well-known Transport Control Protocol (TCP). It uses
some of the mechanisms defined by TCP, but can only be used for communication within the
MOST network. MOST High Protocol transports data and could be used for transporting data
coming from the external world (GSM) that is secured by the “real” TCP.

As already described in section 2.3.2 on page 38, protocols of the following type must be transmitted:

DeviceID.FBlockID.InstID.FktID.OPType.Length (Parameter)

The application message service (AMS), is based on the control message service (CMS). MOST
telegrams transport application protocols. Each telegram is divided up as follows:

Data area of MOST Network Interface Controller = 17 Byte

16 Bit 8 Bit 8 Bit 12 Bit 4 Bit 4 Bit 4 Bit 8 Bit 8 Bit 8 Bit
DevicelD FBlock Inst. Fkt OP Tel Tel Data 0 | Data 1 Data 11
ID ID ID Type ID Len

The parts of the application protocol are cross-hatched. The length of the application protocol is not
transmitted directly. It has no meaning on telegram level, since several telegrams may be required to
transport one protocol. Nevertheless, length is transmitted indirectly via TelLen and MsgCnt and must
be restored on the receiver’s side.

TellD: Identification of kind of telegram
Meaning TellD Data 0 =
MsgCnt
Single Transfer 0 Data 0
1% telegram Segmented Transfer 1 0x00
2" telegram Segmented Transfer 2 0x01
2
2 OxFF
2 0x00
2
(n-1). Telegram Segmented Transfer 2 0x(n-1)
Last telegram Segmented Transfer 3 0xn
MOST High Protocol User data 8
MOST High Protocol Control data 9
TelLen: = 0...12 specifies the length of the data field, i.e., the number of Bytes after TelLen;
0 means no data Byte
Data 0-Data 11: Data Bytes
Specification Document © Copyright 1999 - 2005 MOST Cooperation

MOST Specification 05/2005 Page 177

MOST® MOST

Specification COOPERATION

3.5 Handling Synchronous Data

3.5.1 MOST Network Service API

The MOST Network Interface Controller provides mechanisms for administrating synchronous
channels. In addition to that, the Network Service provides an API to simplify the use of those
mechanisms.

Control Control Sync
Channel Channel Channel
Application Message Service MOST Allocation
(Single + Segmented) High Service
Protocol

Control Message Service

Network Service

Figure 3-23: Network Service for the synchronous channel

On the network, 60 Bytes for synchronous and asynchronous transport are available per frame. A
certain number of these channels can be used for synchronous data transfer. Here, several channels
can be clustered to a synchronous connection for an application. Channels are grouped together into
groups of maximum 8 channels. Every group is then assigned a Connection Label, which is the
number of the lowest channel in the group. Using connection labels makes it easier to handle
connections spanning several groups.

Access to the channels within a device (putting data onto the channels, or getting data from the
channels) is done through the source data ports of the MOST Network Interface Controller in several
different modes. Connecting the source ports with the channels is controlled via the Routing Engine
(RE).

Specification Document © Copyright 1999 - 2005 MOST Cooperation
Page 178 MOST Specification 05/2005

MOST® MOST

Specification COOPERATION

3.5.2 Function Block Functions

On the application level, different basic functions in sources and sinks are realized, which serve the
administration of synchronous connections. They themselves access the routines of the Network
Service. The function block functions can be categorized into three categories:

e Functions that represent the whole device and are located in NetBlock.
e Functions that provide information about both sources and sinks within a function block.
e Functions that deal specifically with only sources or sinks within a function block.

3.5.2.1 NetBlock

NetBlock provides the following method to the network:

e SourceHandles
A controller can request information of which function block is using a specific connection. To
get the information it asks:

Controller -> Slave: NetBlock.Pos.SourceHandles.Get (Handle)

Since there can be several function blocks in a device using the same connection, the answer
is:

Slave -> Controller: NetBlock.Pos.SourceHandles.Status
(Handle, FBlockID.InstID,
Handle, FBlockID.InstID,
.Y)
In case the handle is not used, the following error is reported:

Slave -> Controller: NetBlock.Pos.SourceHandles.Error (0x07, 0x01, Handle)

If the controller specifies OxFF as handle, it gets the handles of all connections used in the
device, and the IDs of the function blocks using them.

Please note: the SourceHandles function should only be used for debugging purposes.

3.5.2.2 General Source / Sink Information
A function block containing a source or sink provides the following function:

¢ SyncDatalnfo
Function SyncDatalnfo can be used to get information of how many connections the function
block may serve as source (SourceCount) or as sink (SinkCount). Sources and sinks are
numbered in ascending order starting from 1. There can be no gaps between different
source/sink numbers. A request is sent:

Controller -> Slave: FBlockID.InstID.SyncDataInfo.Get

Specification Document © Copyright 1999 - 2005 MOST Cooperation
MOST Specification 05/2005 Page 179

MOST® MOST

Specification COOPERATION

The answer contains the number of sources/sinks in this function block:

Controller -> Slave: FBlockID.InstID.SyncDataInfo.Status (SourceCount,
SinkCount)

Lists of synchronous channels must always be in ascending order. If not, then error code 0x06 will be
returned.

3.5.2.2.1 Synchronous Source

There are two approaches of connecting a source to the network, SourceConnect and Allocate.
SourceConnect uses the Connection Manager to reserve resources, which thereby have total control
of resource usage. Allocate is a more decentralized approach with less control of resource usage. The
Connection Manager must only use one approach per function block. But devices may support both
methods.

A synchronous source provides the following functions to the network:

e Sourcelnfo
Property Sourcelnfo contains detailed information about the kind of synchronous source data
that the source can handle. The source information is specific for each source number. On a
request with the SourceNr:

Controller -> Slave: FBlockID.InstID.SourceInfo.Get (SourceNr)

The following is received:

Slave -> Controller: FBlockID.InstID.SourceInfo.Status (SourceNr, DataType,
[DataDescription])

The parameter DataType describes the kind of synchronous data stream that is sent by the
source. Depending on DataType, a DataDescription may follow. Information about data types
can be found in Appendix B: Synchronous Data Types.

e SourceName
Property SourceName holds the name of the synchronous source.
It is requested with the SourceNr as parameter:

Controller -> Slave: FBlockID.InstID.SourceName.Get (SourceNr)
The answer is a string containing the name:

Slave -> Controller: FBlockID.InstID.SourceName.Status (SourceNr, SourceName)

Specification Document © Copyright 1999 - 2005 MOST Cooperation
Page 180 MOST Specification 05/2005

MOST® MOST

Specification COOPERATION

e SourceActivity
Some synchronous source applications require either to start or to stop transmission of stream
data controlled by superior layers. In general, there are specific functions that need to be
called for performing the starting or stopping. It is easier for the controller if this specific
information is not needed. Therefore, for every synchronous source data stream, the abstract
method SourceActivity is defined:

Controller -> Slave: FBlockID.InstID.SourceActivity.StartResult (SourceNr,
Activity)

Through parameter Activity = [On/Off/Pause], synchronous data transfer can be started,
stopped, or paused. After completion of the respective action, the following reply will be
generated:

Slave -> Controller: FBlockID.InstID.SourceActivity.Result (SourceNr,
Activity)

1. SourceConnect Approach
¢ SourceConnect
A Controller can use method SourceConnect to connect a source to already reserved
channels. These channels are administrated by the Connection Manager. The

Connection Manager sends:
Controller -> Slave: FBlockID.InstID.SourceConnect.StartResult
(SourceNr, ChannellList)

Upon successful execution of the method, the following is reported:

Slave -> Controller: FBlockID.InstID.SourceConnect.Result (SourceNr,
SrcDelay)
e SourceDisConnect
SourceDisConnect is used to disconnect a source from the channels it occupied.
Usage of this method does not deallocate the channels that were used. These
channels are administrated by the Connection Manager.

Controller -> Slave: FBlockID.InstID.SourceDisConnect.StartResult
(SourceNr)

After the method has finished, the following is reported:

Slave -> Controller: FBlockID.InstID.SourceDisConnect.Result

(SourceNr)
2. Allocate Approach
e Allocate
To make the source first allocate channels and then connect to them, method Allocate
is used.

Controller -> Slave: FBlockID.InstID.Allocate.StartResult (SourceNr)

On success, the channels the source now occupies and the relative delay to the timing
master is reported:

Slave -> Controller: FBlockID.InstID.Allocate.Result (SourceNr,
SrcDelay, Channels)

Specification Document © Copyright 1999 - 2005 MOST Cooperation
MOST Specification 05/2005 Page 181

MOST®

Specification

MOST

COOPERATION

If the allocation was not successful due to a lack of enough free channels, an error is
generated with the error code “Function specific” and as Error Info the SourceNr and
the number of required channels. An allocation must never be done partially. Unless
all channels can be allocated, no allocation is done. The resulting error will be:

Slave -> Controller: FBlockID.InstID.Allocate.Error

(“Function Specific”, SourceNr, RequiredChannels)
DeAllocate
DeAllocate is used by a controller wishing to cancel that which was done by Allocate
before. This means that the allocated channels will be deallocated and that the source

no longer is connected to them.

Controller -> Slave: FBlockID.InstID.DeAllocate.StartResult (SourceNr)

On success, the channels are no longer occupied and the source is disconnected from

the channels.

Slave -> Controller: FBlockID.InstID.DeAllocate.Result (SourceNr)

3.5.2.2.2 Synchronous Sink

A function block that is used as a sink for synchronous data supports functions similar to those for a

source. Error handling is also done in an analogous way.
A synchronous sink provides the following functions to the network:

e Sinkinfo

Property Sinkinfo contains detailed information about the kind of synchronous sink data that
the sink can handle. The sink information is specific for each sink number. On a request with

the SinkNr:

Controller -> Slave: FBlockID.InstID.SinkInfo.Get (SinkNr)

The following is received:

Slave -> Controller: FBlockID.InstID.SinkInfo.Status (SinkNr, DataType,

[DataDescription])

The parameter DataType describes the kind of synchronous data stream that may be received
by the sink. Depending on DataType, a DataDescription may follow. Information about data

types can be found in Appendix B: Synchronous Data Types.
e SinkName

Property SinkName holds the name of the synchronous sink.
It is requested with the SinkNr as parameter:

Controller -> Slave: FBlockID.InstID.SinkName.Get (SinkNr)

The answer is a string containing the name:

Slave -> Controller: FBlockID.InstID.SinkName.Status (SinkNr, SinkName)

e Connect
A controller uses Connect to connect the sink to specified channels.

Controller -> Slave: FBlockID.InstID.Connect.StartResult (SinkNr, SrcDelay,

Channels)

Specification Document © Copyright 1999 - 2005 MOST Cooperation
Page 182 MOST Specification 05/2005

MOST® MOST

Specification COOPERATION

SrcDelay is the relative delay to the timing master. It is used to provide the possibility of delay
compensation. The sink returns as result:

Slave -> Controller: FBlockID.InstID.Connect.Result (SinkNr)
e DisConnect
Method DisConnect is used to disconnect a sink from channels it is currently using.

Controller -> Slave: FBlockID.InstID.DisConnect.StartResult (SinkNr)

After the method has finished, the following is reported:

Slave -> Controller: FBlockID.InstID.DisConnect.Result (SinkNr)

e Mute
The output of synchronous data from a sink can stopped by method Mute.

Controller -> Slave: FBlockID.InstID.Mute.SetGet (SinkNr, Status)

Status is On or Off to turn mute on or off.

3.5.2.2.3 Handling of Double Commands

Normally a repeated synchronous control command (this means: allocate / deallocate / connect /
Disconnect / SourceConnect / SourceDisConnect) should not appear. This handling should be done
by the Connection Manager. But in an error case the behavior of the device is defined in the following
way:

e Source methods
1. SourceConnect Utilization

e SourceConnect
If there is a SourceConnect.StartResult command with a source number of a currently
connected source and the Channellist contains the same channels that it is
connected to, a normal result message will be sent. If an already connected source is
to be connected to different channels the device will first disconnect the old
connection and then make the new one. Following this it sends out a result message.

e SourceDisConnect
If there is a SourceDisConnect.StartResult command, with a source number of a
currently not connected source, a normal result message with the disconnected
source number is sent back to the caller.

2. Allocate Utilization

e Allocate
If there is an Allocate.StartResult command with a source number of a currently
allocated source, a normal result message with the already allocated channels is sent
back to the caller.

o DeAllocate
If there is a DeAllocate.StartResult command with a source number of a currently not
allocated source, a normal result message with the source number is sent back to the
caller.

Specification Document © Copyright 1999 - 2005 MOST Cooperation
MOST Specification 05/2005 Page 183

MOST® MOST

Specification COOPERATION

Sink methods

Connect

If there is a Connect.StartResult command with a sink number of a currently connected
sink and the same channels that it is connected to, a normal result message will be sent. If
an already connected sink is to be connected to different channels the device will first
disconnect the old connection and then make the new one. Following this it sends out a
result message. If a new value of SrcDelay is passed to the sink, this must be used
instead of the old one.

DisConnect

If there is a DisConnect.StartResult command with a sink number of a currently not
connected sink, a normal result message with the disconnected sink number is sent back
to the caller.

3.5.2.3 Compensating Network Delay

Every active node in the ring (source data bypass inactive) generates 2 samples delay for the source
data (caused by internal processing). Especially in top HIFI applications, this is an unpleasant effect.
The MOST system therefore provides mechanisms that allow compensation for this delay. Every
MOST Network Interface Controller is provided with the information about the general delay of the
entire system ATyewor, and the delay up to its own node ATyege With respect to the Timing Master. In
addition to that, the delay of the active source device ATsqce must be made available by control

messages.

Based on that information, the delay ATq,mp, Which must be compensated for, can be calculated with
the help of the formula below:

AII‘comp
AII|comp

= ATNode - ATSource - 2[Samples] for ATSource < ATNode
= ATNetwork - AII|Source + AII‘Node -2 [Samples] for ATSource > ATNode

= Contents of the respective register in the chip * 2 Samples Delay)

Specification Document © Copyright 1999 - 2005 MOST Cooperation

Page 184

MOST Specification 05/2005

MOST® MOST

Specification COOPERATION

3.6 Handling Asynchronous (Packet) Data

3.6.1 Direct Access to the MOST Network Interface Controller

A data packet that can be sent in the asynchronous area consists of 48 Bytes of data and a 16-bit
receiver address (logical node address only):

Data area MOST Network Interface Controller = 48 Byte

16 Bit
Rx/TxLog

The data field is significantly longer than that of the control channel. Unlike the control channel, no
ACK/NAK mechanism or low level retries are implemented, since they are not necessary for most of
the applications. Nevertheless, the telegram is checked. A transport protection must be implemented
on a higher level.

3.6.1.1 Priorities

In every node (MOST Network Interface Controller) the priority for packet data transfer can be
assigned (range 0x01, ..., 0xOF with value Ox07 = lowest priority).

Specification Document © Copyright 1999 - 2005 MOST Cooperation
MOST Specification 05/2005 Page 185

MOST® MOST

Specification COOPERATION

3.6.2 MOST Network Service

The Network Service have a mechanism, called the Asynchronous Data Transmission Service, by
which the data packets described above can be sent and received. It handles the respective registers
in the MOST Network Interface Controller.

3.6.2.1 Securing Data

For stream data of high bandwidth, e.g., graphical applications, it is not useful to implement
mechanisms for secure data transmission. On one hand the data security (bit error rate) of MOST is
approximately 10", on the other hand, every securing mechanism must be checked by a uController,
which becomes more and more difficult, as the bandwidth is increased. In case of errors,
transmissions would be repeated. This would cause delays that may be unwanted. It must be decided
for each application, whether mechanisms for secure data transmission would be useful, and if so,
which implementation to use.

For certain applications, which transmit in the asynchronous area at a lower bandwidth, it may be

useful to implement securing mechanisms. The telegram structure, quite alike that of the control
channel could be used by setting TellD to 4 bits and TelLen to 12 bits.

Data Area MOST Network Interface Controller = 48 Byte (Data Link Layer 48 Bytes Mode)

16 Bit 8 Bit 8 Bit 12 Bit 4 Bit 4 Bit 12 Bit 8 Bit 8 Bit 8 Bit
DevicelD FBlock Inst. Fkt OP Tel Tel Data 0 | Data 1 Data 41
ID ID ID Type ID Len

Data Area MOST Network Interface Controller = 1014 Byte (Alternative Data Link Layer)

16 Bit 8 Bit 8 Bit 12 Bit 4 Bit 4 Bit 12 Bit 8 Bit 8 Bit 8 Bit
DevicelD FBlock Inst. Fkt OP Tel Tel Data 0 | Data 1 Data 1007
ID ID ID Type ID Len
TellD: Identification of kind of telegram
Meaning TellD
MOST High Protocol 8
User data
MOST High Protocol 9
Control data
Reserved for A B
MAMAC PacketsEthernet frames

TelLen: = up to 1008 (42)

Specifies the length of the data field, i.e., the number of Bytes after TelLen
Data X: Data Bytes
Specification Document © Copyright 1999 - 2005 MOST Cooperation

Page 186 MOST Specification 05/2005

MOST® MOST

Specification COOPERATION

For securing data, MOST High Protocol is used here.

Control Control Sync Async.
Channel Channel Channel Channel
Message Transfer MOST Allocation MOST
(Single + Segmented) High Service High
Protocol Protocol

Async Data Transmission

Control Message Service Semies

Network Service

Figure 3-24: Network Service: Services for the asynchronous channel

Specification Document © Copyright 1999 - 2005 MOST Cooperation
MOST Specification 05/2005 Page 187

MOST® MOST

Specification COOPERATION

3.6.3 MOST Asynchronous Medium Access Control (MAMAC)

To be able to run commonly used network protocols like TCP/IP (including IPX, NetBEUI and ARP)
through the Asynchronous (Packet Data) channel of MOST, MOST Asynchronous Medium Access
Control (MAMAC) was defined. MAMAC can be used simultaneously with the Most High Protocol.

Specification Document © Copyright 1999 - 2005 MOST Cooperation
Page 188 MOST Specification 05/2005

MOST® MOST

Specification COOPERATION

3.7 Controlling Synchronous / Asynchronous Bandwidth

When administrating the boundary between synchronous and asynchronous data area, two contrary
requirements must be taken into consideration. On one hand, there should be as much bandwidth as
possible for asynchronous data transfer, so it is not reserved for unused synchronous channels. On
the other hand, the boundary should be changed only in rare cases, since all synchronous
connections must be re-allocated after the boundary was changed.

Even with the most adverse usage of a fully equipped vehicle, the entire available bandwidth for
synchronous transfer is seldom used. Generally, less bandwidth is required for synchronous transfer.

System initialization adjusts the boundary to the center of the bandwidth. During runtime it is shifted
only “to the right”, that is, in the direction of an extension of the synchronous area, up to a limit, which
will reserve, e.g., one quadlet for asynchronous data transfer. There is no shifting to the left. The
boundary is returned to its default value only after a re-initialization of the system.

The changing of the boundary between synchronous and asynchronous area is done physically by the
Timing Master, located in the system Master device.

Specification Document © Copyright 1999 - 2005 MOST Cooperation
MOST Specification 05/2005 Page 189

MOST® MOST

Specification COOPERATION

3.8 Connections

3.8.1 Synchronous Connections

3.8.1.1 ConnectionMaster

Synchronous connections are managed by a Connection Manager. All requests for establishing
connections must be directed to this Connection Manager. It could be implemented in any device.
The Connection Manager shall supply functions defined in FBlock ConnectionMaster (0x03).

For building a point-to-point connection, FBlock ConnectionMaster provides a method
BuildSyncConnection:

Controller -> CManager: ConnectionMaster.l.BuildSyncConnection.StartResultAck
(SenderHandle, Source, Sink)

Source in the method above refers to any source:
Source = FBlocklID.InstID.SourceNr.

Sink refers to any sink:

Sink = FBlockID.InstID.SinkNr.

CManager is the DevicelD of the Connection Manager.

After a successful connection is built, the ConnectionMaster returns:

CManager -> Controller: ConnectionMaster.l.BuildSyncConnection.ResultAck
(SenderHandle, Source, Sink)

Error handling:

If the connection fails, the ConnectionMaster answers with OPType “ErrorAck” (0x9) and the
ErrorCode “ProcessingError” (0x42), and returns the parameters Source and Sink:

CManager -> Controller: ConnectionMaster.l.BuildSyncConnection.ErrorAck
(SenderHandle, "ProcessingError”, Source, Sink)

Removing a connection is done in an analogous way, by using the method RemoveSyncConnection.

The ConnectionMaster generates an array of all existing connections including sources and sinks,
where it adds more information. This array is accessible in function SyncConnectionTable:

Controller -> CManager: ConnectionMaster.l.SyncConnectionTable.Get

CManager -> Controller: ConnectionMaster.l.SyncConnectionTable.Status
(Source, Sink, SrcDelay, NoChannels, Channellist,
Source, Sink, SrcDelay, NoChannels, Channellist
Source, Sink, SrcDelay, NoChannels, ChannellList, ...)

Specification Document © Copyright 1999 - 2005 MOST Cooperation
Page 190 MOST Specification 05/2005

MOST® MOST

Specification COOPERATION

The parameters are the same as those described above. SyncConnectionTable cannot be set
directly. Building and removing connections is done only with methods BuildSyncConnection and
RemoveSyncConnection.

After switching off the network, the contents of SyncConnectionTable are deleted, leaving no
synchronous connections in the system. They must be rebuilt by new requests of the initiator(s).

The SyncConnectionTable is deleted also when Configuration.Status(NotOK) is received by the
Connection Manager since all connections are removed in this case. See section 3.3.2 for more
information.

FUNCTIONS
FktID OPType Sender Receiver Explanation
BuildSyncConnection StartResultAck | Controller Connection | Request for building connection
Manager
ResultAck Connection Controller Answer with result
Manager
SyncConnectionTable Get Controller Connection Request of that property, where the
Manager Connection Manager stores all active point-to-
point connections
Status Connection Controller Answer
Manager
RemoveSyncConnection StartResultAck | Controller Connection Request for removing connection
Manager
ResultAck Connection Controller Answer with result
Manager

Table 3-15: Functions in ConnectionMaster in conjunction with the administration of synchronous connections

Deadlock prevention:

In order to prevent potential deadlocks in the connection building process, tcwm peadiockprev IS Us€d.
tcm peadiockprev iS Started as the Connection Manager makes a request to a source/sink Function Block.
If the timer expires the action will be regarded as failed.

This timer should not be used as a maximum time for the source/sink to carry out their respective
operations since this must be done much faster; it is merely used to prevent deadlocks and should
only be effective in the special cases where a source/sink device has malfunctioned after receiving the
command from the Connection Manager.

Specification Document © Copyright 1999 - 2005 MOST Cooperation
MOST Specification 05/2005 Page 191

MOST® MOST

Specification COOPERATION

3.8.1.2 Establishing Synchronous Connections

When building a synchronous connection, the Connection Manager uses method Allocate or
SourceConnect in the Source FBlock to connect it to the network. After a positive answer from the
source, the Connection Manager uses the method Connect in the Sink FBlock to connect it to the
same channels as used by the source. This mechanism is explained in the following figure, and the
text below.

Initiator
1 8
Source «——2 Connection 5—» 6 Sink
Device 4— » Manager «—7 Device

Figure 3-25: Building a synchronous connection step by step

Explanation of Figure 3-25:

1) Method BuildSyncConnection is started by an initiator, for building a connection between a source
and a sink. If the source uses the method SourceConnect to connect to the network, the
Connection Manager is responsible for the channels being unoccupied. If the method Allocate is
used by the source the source must allocate its own channels.

2) Connection Manager sends a command to the source device to connect its synchronous output to
network channels. The source must support at least one of the methods Source Connect or

Allocate.

3) The Source handles the request differently depending on if it uses method Allocate or
SourceConnect

a) Allocate:
The source tries to allocate channels. The following results are possible:

¢ Enough free channels. Reply to Connection Manager (4) as Allocate.Result with
parameters SourceNr, SrcDelay and Channels.

e Timing Master is busy on processing other allocation/deallocation requests. Retries may
be tried until tom_peadiockprev Na@s expired, at which time Allocate is regarded as failed by the
Connection Manager. The rate at which the Timing Master can be asked is regulated by

tResourceRetry-

Specification Document © Copyright 1999 - 2005 MOST Cooperation
Page 192 MOST Specification 05/2005

MOST® MOST

Specification COOPERATION

e Not enough channels. Reply to ConnectionMaster (4) as Allocate.Error with parameters
SourceNr and RequiredChannels.

b) SourceConnect:
A SourceConnect node does not need to allocate channels. It connects to the ones supplied
by the Connection Manager when invoking the SourceConnect method. The result is sent
back to the Connection Manager (4).

4) The Result is sent to the Connection Manager.

5) If the result is ok, the Connection Manager starts method Connect of the sink, communicating
parameters Channels and SrcDelay. The sink has then all the information needed of the source.

6) The Sink connects to the channels.
7) The result is sent to the Connection Manager as Connect.Resuilt.

8) The ConnectionMaster reports the result of establishing the connection to the initiator by using
BuildSyncConnection.ResultAck. If the building of the connection was successful, the
ConnectionMaster internally stores the connection data. This way, if another sink is connected to
this source, only the allocation data needs to be sent to the new sink.
In case of a failure, BuildSyncConnection.ErrorAck is sent and all changes to the network is
unmade. That means that if an error occurred in the Connect process, the source is disconnected
and the channels are freed again.

Specification Document © Copyright 1999 - 2005 MOST Cooperation
MOST Specification 05/2005 Page 193

MOST® MOST

Specification COOPERATION

3.8.1.3 Removing Synchronous Connections

The initiator terminates a connection previously built by the Connection Manager. The Connection
Manager commands the sink to disconnect from the channels, which it is currently using.

After a positive answer, and if the channels are not in use by another sink, the Connection Manager
disconnects the source from its channels. Depending on whether the source uses SourceConnect or
Allocate to connect to the network, the Connection Manager uses method SourceDisConnect or
Deallocate.

After that, the Connection Manger reports the result of the termination to the initiator.

Initiator
1 8
Source «———5— Connection 2—p 3 Sink
Device 7— Manager «— 4 Device

Figure 3-26: Step by step removal of a synchronous connection

Explanation of Figure 3-26:

1) Method RemoveSyncConnection is started by an initiator, for removing a connection between a
source and a sink.

2) The Connection Manager starts method DisConnect in the sink FBlock, this makes the sink
disconnect from the previously used channels.

3) The sink disconnects from the used channels.
4) The sink reports the result to the Connection Manager by DisConnect.Resuilt.

5) If no other sink uses the channels in the connection, the channels will be freed. Otherwise
continue at 8. Freeing the channels is handled differently depending on if the source uses
Allocate or SourceConnect. The respective method for releasing the channels is called by the
Connection Manager.

Specification Document © Copyright 1999 - 2005 MOST Cooperation
Page 194 MOST Specification 05/2005

MOST® MOST

Specification COOPERATION

6) The source disconnects or deallocates and disconnects upon reception of SourceDisConnect
or DeAllocate.

a) DeAllocate:

The source has to deallocate the used channels. Upon trying to do this, the following results
are possible:

e Successful de-allocation. Positive answer by DeAllocate.Result (7).

e The Timing Master is busy handling other allocation/ de-allocation requests. Retries may
be tried until tom_peadiockprev Na@s expired, at which time DeAllocate is regarded as failed by
the Connection Manager. The rate at which the Timing Master can be asked is regulated
by tResourceRetry-

b) SourceDisConnect:
A SourceConnect node does not need to deallocate channels. The connection manager is
responsible for handling the channels. The source node disconnects from the channels and
reports the result to the connection manager (7).

7) The result is sent to the Connection Manager as SourceDisConnect.Result or
DeAllocate.Result depending on the method used.

8) If the Connection Manager has received a positive answer from the source, the connection is
removed from its internal connection table. The Connection Manager sends an answer,
RemoveSyncConnection.ResultAck, to the Initiator. The message contains the status of the
requested termination of the connection.

3.8.1.4 Supervising Synchronous Connections

Every synchronous sink is responsible of supervising the validity of its output. If a source malfunctions
and the data on the channels is rendered invalid the sink has to secure its synchronous output signals.

3.8.1.4.1 Enabling Synchronous Output

A sink that cannot detect the validity of the data on the channels has to verify if a device is currently
putting out data. A sink application must use RemoteGetSource if it cannot make sure that it receives
valid data by other mechanisms

3.8.1.4.2 Source Drops

A source that malfunctions might drop from the network, thus generating a Network Change Event.
When this is detected by a sink it has to verify that a source is still connected to the channels and if
not secure its synchronous output. Sinks with automatic noise detection do not need to use this
method.

Another approach may be used if part of the device is still operational. The source device must then
route zeros (signal mute) to the channels of the malfunctioning FBlock for a time tgieanchanneis- IN this
way it will be as if the sink muted its output. After time tgieanchannels the source must be disconnected
from the network. Then the device must send out an FblocklDs.Status without the malfunctioning
source FblockID. This informs the network that the source FBlock is no longer available.

Specification Document © Copyright 1999 - 2005 MOST Cooperation
MOST Specification 05/2005 Page 195

MOST®

Specification

MOST

COOPERATION

3.9 Timing Definitions

T= Timer. If expired, the implementation has to invoke an error handling as defined in the
respective section of the specification.
C= Timing constraint. The implementation has to fulfill this timing requirement in order to

be compliant to this specification.

Name

| Min Value | Typ Value |Max Value [Unit | Type |Definition

Initialization

tConfig

1975

2000

2015

ms

T

Time that may pass after
initialization of the MOST
Network Interface Controller in
a master or a slave device until
a stable lock has been
achieved at least once and the
boundary is set to a value > 5
(i.e., the TimingMaster
generated a Net On event)

tWakeUp

25

ms

Maximum time between start of
activity at the Rx input of the
device and start of activity at
the device’s Tx output.

(63 e tWakeUp) *+ twaitNodes * tLock
tBoundarv < tConfiq

tWaitNodes

100

ms

Time that may pass between
start of activity at the Rx input
of a device and the deactivation
of its all-bypass. This timer is
valid only when starting up the
network.

tBoundary

20

ms

Time after which a change of
the boundary must be detected
while waiting for the Net On
event.

tWaitBeforeScan

100

100

500

ms

Time between broadcast of
Configuration.Status(NotOk) or
NetOn and start of a new scan
by the NetworkMaster.
tWaitBeforeScan f tWaitAf'terNCE

tDeIanyg Request1

500

500

550

ms

Time after which the
NetworkMaster starts to query
nodes again that did not answer
within tWaitForAnswer-

This time is used for the first 20
attempts after the Net On

event.

tDeIanyg Request2

10

10

11

Same ?S tDelanygRequest1= but from
the 21° attempt on.

Specification Document

Page 196

© Copyright 1999 - 2005 MOST Cooperation
MOST Specification 05/2005

MOST® MOST

Specification COOPERATION
Shutdown
tshutbown - - 15 ms |C Time between a shutdown

event (i.e. stop of activity at the
device’s Rx input during normal
operation or ring break
diagnostics mode or start of
activity at the input when in
slave wakeup mode) and the
stop of activity at the device’s
Tx output.

tsuspend 1975 2000 2100 ms T Time the PowerMaster waits for
a ShutDown.Result(Suspend)
message after broadcast of
ShutDown.Start(Query).
tshutDownWait 1 2 15 S T Time the PowerMaster waits
between broadcasting
ShutDown.Start(Execute) and
switching off the Tx output.

tRetryShutbown 9.9 10 10.1 s T Time the PowerMaster waits
between
ShutDown.Start(Query)
broadcasts.

tRrestart 275 300 350 ms |T Time after switching off the Tx

output until the device is ready
to switch on the Tx output
again. Note: This timing applies
to networks with up to 19
nodes. For networks with more
nodes, the following formulae
applies:
1. tRestartMin = (NUmber of
nodes) o tshypown — 10mMs
2. trestartmax = (Number of
nodes) e tshupown + 65Ms

3. tRestartMin < tRestartTyp <

tRestartMax
tpwrswitchofDelay | D 5 device S T Time between switching off the
specific Tx output and changing to state
DevicePowerOff
tsiaveShutdown 16 - - s T Time a slave device shall wait

after ShutDown.Start(Execute)
before it may switch off light
without detection of no light at
the input.

Specification Document © Copyright 1999 - 2005 MOST Cooperation
MOST Specification 05/2005 Page 197

MOST®

Specification

MOST

COOPERATION

General

tLock

75

100

115

ms

Time during which no lock
errors must occur, before the
lock is declared “stable”. Note:
While a ring break diagnosis is
pending, tpiag Lock has to be
used instead.

tUnlock

60

70

100

ms

Accumulated time of unlocks
that lead to the detection of a
critical unlock.

tMPRdeIay

200

ms

Time between a network
change event (NCE) and the
notification of applications for
which NCEs are relevant.!

tmPRdelay = tiock

tWaitAfterNCE

200

200

500

ms

Time between a NCE and the
start of the network re-scan by
the NetworkMaster.

tmPRdelay < twaitafterncE <
tDelavaqRenuesH

tBypass

50

70

100

ms

Time the all-bypass of a device
must stay active after being
activated. This timer is not valid
when starting up the network. It
applies only when a node drops
out of the network.

typass < twaithodes

tAnswer

50

ms

Time during which a network
slave must respond to a query
by the NetworkMaster.

tWaitForAnswer

100

200

500

ms

Time a NetworkMaster waits for
an answer from a queried
slave.

tWaitForAn:awer < tDeIaMCngequesH

tResourceRetry

10

ms

Time between attempts of
allocating or deallocating
synchronous resources

tProperty

200

ms

Time between complete
reception of a query to a
property and the start of the
response message.

tWaitForProperty

250

300

350

ms

Time a shadow waits for the
reception of a query to a
property.

tF’rocessingDefault‘l

100

150

ms

Time a device waits before
sending the first Processing
message.

tF’rocessingDefaultZ

100

100

ms

Time a device waits between
sending subsequent Processing
messages.

' Devices containing such applications must only be used in node positions where this requirement

can be fulfilled.

Specification Document

Page 198

© Copyright 1999 - 2005 MOST Cooperation
MOST Specification 05/2005

MOST®

Specification

MOST

COOPERATION

tWaitForProcessing
1

200

200

250

ms

Time a Shadow waits for the
reception of the first Processing
message, if not specified
otherwise for the respective
message in the FBlock
Specification.

tWaitForProcessing
2

200

200

ms

Time a Shadow waits for the
reception of the following
Processing messages. The
timer should be set to 100 ms

more than tProce:ssingDefauItZ-

tCIeanChanneIs

3.5

25

ms

Time during which a source
must route zeroes onto
synchronous channels before it
stops using them.

tem_DeadiockPrev

1000

ms

Timer to prevent deadlocks in
the connection building
process.

Ring Break Diagnosis

Note: The following definitions represent the range within system integrators can choose the timings
for a specific system. Tolerances that are applied to these values for nodes of the same system are:

+15ms, -25ms.

tDiag_Light

0

0

100

ms

T

Time a node waits for activity at
its Rx input before switching to
ring break master mode.

tDiangaster

28

58

Time a node stays in ring break
master mode before generating
the result of the diagnosis.

tDi51978I51v<a

30

60

Time a node stays in ring break
slave mode before generating
the result of the diagnosis. In
addition,

tDiag_SIave 2 tDiag_Master + 2s must
be true.

tDiag_Lock

250

250

260

ms

Same as t ., but valid during
ring break diagnosis.

tDiag_Start

10

If using SwithToPower to trigger
ring break diagnosis, the
diagnosis has to be started
within tDMrt.

tDiag_Restart

10

This is the time a device has to
wait after an unsuccessful
diagnosis (ring broken) until it
can be restarted by network
activity.

The value of this timer should
be greater or equal to the
maximum difference between
the startup of ring break
diagnosis in different devices.
If this time is unknown, the
maximum value can be used.

Table 3-16: Timing Definitions

Specification Document

© Copyright 1999 - 2005 MOST Cooperation
MOST Specification 05/2005

Page 199

MOST® MOST

Specification COOPERATION

3.10 Secondary Node

For some applications it can be useful to integrate two MOST Network Interface Controllers into one
device. This section describes, which scenarios are available, and how the tasks are divided up
between the two MOST Network Interface Controllers.

Please note:
The Secondary Node approach applies for Timing Slave nodes only.

When using secondary nodes, both MOST Network Interface Controllers are controlled by the same
microcontroller. That node, where Control Messaging is handled (and where the Network Service are
running mainly) is called “Primary Node”. There are three scenarios:

e Scenario 1:
Primary node : Ctrl + Packet
Secondary node : Stream

e Scenario 2:
Secondary node : Stream
Primary node : Ctrl + Packet

e Scenario 3:
Primary node : Ctrl + Stream
Secondary node : Packet

All timing constraints, which apply for “normal” MOST nodes must be fulfilled by secondary nodes too.
The address of the secondary node should be determined and initialized too.

3.10.1 Scenario 1

MOST Device
Ctrl + Packet Stream
FOT FOT
fé Rx Primary Tx Rx Secondary Tx N
Node Node
Pos =n Pos=n+1
\ Micro /
Controller
Primary Node Secondary Node
- SP Parallel Async., CP Serial - SP Serial, CP Serial
- SP Parallel Async., CP Parallel - SP Parallel Sync., CP Serial
- SP Parallel Sync., CP Parallel
Figure 3-27: Secondary Node, scenario 1
Specification Document © Copyright 1999 - 2005 MOST Cooperation

Page 200 MOST Specification 05/2005

MOST®

Specification

MOST

COOPERATION

In Scenario 1, the node position (Pos) of the primary node is always less than the node position of the
secondary node. Figure 3-27 shows, which configurations for Source Data Port (SP) and Control Port

(CP) are available.

3.10.2 Scenario 2

MOST Device

Stream

Ctrl + Packet

fé Rx Secondary Tx
Node

Pos =n

RX Primary Tx
Node

Pos=n+1

N

Micro
Controller

./

Secondary Node

- SP Serial, CP Serial

- SP Parallel Sync., CP Serial

- SP Parallel Sync., CP Parallel

Primary Node
- SP Parallel Async., CP Serial
- SP Parallel Async., CP Parallel

Figure 3-28: Secondary Node, scenario 2

In Scenario 2, the node position (Pos) of the secondary node is always less than the node position of
the primary node, except for the primary node being the system’s Timing Master. Figure 3-28 shows,

which configurations for Source Data Port (SP) and Control Port (CP) are available.

Specification Document

© Copyright 1999 - 2005 MOST Cooperation

MOST Specification 05/2005

Page 201

MOST® MOST

Specification COOPERATION

3.10.3 Scenario 3

MOST Device
Ctrl + Stream Packet
FOT FOT
,é Rx Primary Tx Rx Secondary Tx R
Node Node
Pos=n Pos=n+1
\ Micro /
Controller

Primary Node Secondary Node
- SP Parallel Sync., CP Serial - SP Parallel Async., CP Serial
- SP Parallel Sync., CP Parallel - SP Parallel Async., CP Parallel

Figure 3-29: Secondary Node, scenario 3

In Scenario 3, the node position (Pos) of the primary node is always less than the node position of the
secondary node. Figure 3-29 shows, which configurations for Source Data Port (SP) and Control Port
(CP) are available.

Specification Document © Copyright 1999 - 2005 MOST Cooperation
Page 202 MOST Specification 05/2005

MOST®

Specification

MOST

COOPERATION

4 Hardware Section

4.1 Basic HW Concept

The fundamental hardware structure of a MOST device is displayed in the block diagram below.
There are blocks that are not mandatory, since, e.g., a simple MOST device does not always need a
micro controller (active speaker). Areas that are not mandatory are displayed in gray. A MOST device
consists of:

e Optical interface area
e MOST function area
e uCarea

e Application area

e Power supply area

A MOST network is awakened optically. All MOST devices are connected to a continuous power
supply. They activate a sleep mode if required. If a device is in sleep mode, the power consumption
should be reduced as far as possible (current < 100 pA). For this reason, unused areas must be
separated from the power supply. Only the sections that are absolutely necessary will stay powered.
It must be taken into consideration that no parasitic currents will flow via signal lines between inactive
and active sections.

The individual areas are explained below.

o0 UApp
Continuous
power (+)
Power Supply Area ——o 5VDig
Ground o——
———o0 5V Cont
ﬁ . E— A A U<V A
Statu SwitchToPower| Reset| WDTrig Hold Us16M SA
OptPwrSwitch
5V Ci 5V Di oV Dig UA
ont 9 SVfig BV Cont pp
L T AR [
— 4 Ll 4*
Optical MOST —_— S
P RX . UCReset uController Application
Interface Function < Are Are
/ Area - . Area Control a Control a

t SourceDat ’

Figure 4-1: Example of the structure of a MOST device, the different functional areas and their interfaces

Specification Document

© Copyright 1999 - 2005 MOST Cooperation
MOST Specification 05/2005

Page 203

MOST® MOST

Specification COOPERATION

4.2 Optical Interface Area

4.2.1 Overview

The optical interface area consists of an optical receiver and an optical transmitter. Both communicate
with the MOST Network Interface Controller via a single data line (RX and TX). The receiver is
connected to continuous power, unlike the transmitter.

. Short connection to FOT
MOST BigfootRx
100uH
_L 5:Vee _L +5Vcont.
I 100N I J— 10u
/\’5 ZK _l IN Amplification/Data L 1
— Slicing/Pulse Width - RX
Correction 8: RX_DATA {3}
150R close to Receiver
F b 6: GND 1
Activity = 7:STATUS — STATUS
Detection '
OptPwrSwitch
0: normal Power
Short connection to FOT S 1:-3dB
MOST BigfootTx \ K"
4: Control
L 3:Vee _L l 5V Dig
I 100N I 10u
5«« - 11
= = 150R close to 0S8104
. — X
\T/ 1: TX_DATA
J‘iv) 2: GND—AL
= = * TBD
Optical Interface Area

Figure 4-2: Optical interface area

The receiver contains an ActivityDetection logic that is supplied with continuous power via the micro
power regulator (5V cont.), and that consumes less than 20pA. As soon as the ActivityDetection logic
recognizes modulated light, signal status is switched to low, and the received data stream is switched
to the output.

Signal Status is connected to the power supply area, and therefore the power to the MOST Network
Interface Controller, and eventually to other areas, is switched on.

If no light is received, the receiver is switched off, except for the wake-up logic. Signal Status is high
then.

Specification Document © Copyright 1999 - 2005 MOST Cooperation
Page 204 MOST Specification 05/2005

MOST® MOST

Specification COOPERATION

It is possible to influence the driver current of the transmitter by a resistor between 5Vdig and input
Control. A second resistor that has the same value can be connected in parallel to the first resistor by
using switch 1. When doing that, the optical output power is increased by approx. 3dB. Switch 1 is
controlled by signal OptPwrSwitch, which is driven by the pC area. The uC only activates
OptPwrSwitch, if it has received the respective KWP2000 command. After toppwriow, the uC has to
deactivate OptPwrSwitch independently.

In normal operation mode the switch is closed, so the transmitter runs at maximum optical power
output.

This circuit provides diagnosis. If the optical power between two devices is reduced by 3dB and the
system still works correctly, it can be assumed that there is a reserve of at minimum 3dB with respect
to the optical power budget.

Please note:
By an appropriate arrangement (e.g., Pull down resistor, or inverter connected to
OptPwrSwitch) it must be made sure, that S1 is closed in case of an inactive uC.

For the lock behavior in a MOST network there are two important influencing variables:

e Optical Power Budget

e Phase jitter

In opposite to the power budget, the phase jitter may be accumulated when passing several nodes.
An important influence variable for the phase jitter is the design of the optical interface area. Here
interference’s on highly resistive data wiring and crosstalk may occur.

For avoiding that, in the data lines to and from the MOST Network Interface Controller a resistor of 100
Ohms up to 150 Ohms must be inserted. The resistors must be placed as close to the feeding output
as possible. In addition to that, optical receiver and transmitter must be placed closely to the MOST
Network Interface Controller. The maximum length of data lines to Rx and from Tx must be less than
1.5cm.

Another important factor is the layout of the PCB. Below all data lines, transmitter and receiver a HF
ground plane should be placed. Ideally, Rx and TX line are placed as far apart as possible, separated
by a piece of ground area. The shielding box of the optical header must be connected well to the
ground plane (by soldering). In addition to that, the power supply of the optical interface area must be
buffered and blocked carefully. Therefore the bypass capacitors must be placed as close to the
transmitter and receiver as possible. 100 nF (Ceramic type) must be placed between every VCC and
GND. Another important point is, that the bypass capacitors of transmitter and receiver must be
located between the transmitter/ receiver and that point, where the two ground planes of receiver and
transmitter are connected together.

Please note
Since very high data rates are transported at low signal levels, Optical Interface Area and
MOST Function Area must be designed with respect to the rules of high-frequency
engineering.

Specification Document © Copyright 1999 - 2005 MOST Cooperation
MOST Specification 05/2005 Page 205

MOST® MOST

Specification COOPERATION

4.2.2 Connection Systems (Pig Tail)

In contrast to existing systems both transceivers are placed remotely with respect to the device’s plug;
e.g., on the PCB near by the MOST Network Interface Controller. They are connected to the device’s
socket with “pig tails” (Pieces of POF). This provides the following advantages:

e Possibility of protecting the end of the fiber at the device’s socket
e Easing of EMI problems

e Flexible placement on PCB

e Small dimensions

e Decoupling of the plugging system of the device from the case of the FOTs

Device

Socket of device

External plug

Pig tail
% @ Send/ receive unit

Figure 4-3: Connecting the FOTs to the plug of the device via “pig tail”

The “pig tails” are connected to the FOTs and to the device’s plug with a plugging system in each
case.

The device’s plugging system is carried out modularly and in a hybrid way. So one or more pairs of
optical connectors can be combined with different electrical connectors as in a kind of model kit, for
deriving plugging systems for the different devices.

Please note:
The description above is one possible implementation of a “pig tail”. Also other solutions are possible.
However, the mechanical interface is standardized.

Specification Document © Copyright 1999 - 2005 MOST Cooperation
Page 206 MOST Specification 05/2005

MOST® MOST

Specification COOPERATION

4.3 MOST Function Area

The MOST function area consists of the following components:

e MOST Network Interface Controller
e Crystal
e PLL-Filter

The MOST Network Interface Controller communicates with a microcontroller via 1°C (as slave), SPI or
parallel bus. Source data is exchanged with the application via the source data bus.

Reset:

On a reset, the MOST Network Interface Controller activates all bypass mode, switches to Slave
mode, and switches the interrupt pin to inactive (‘1’). After reset is deactivated, the interrupt pin
changes to ‘0’ (PowerOn interrupt). The microcontroller (uC) waits for this interrupt and then initializes
the MOST Network Interface Controller in Timing Master or Slave mode.

For devices with uC area it must be possible in any case, that the MOST Network Interface Controller
can be reset by the respective uyC as well (UC reset or Watchdog Reset), since here the MOST
Network Interface Controller is not controlled and initialized via the network, but by the uC.

Please note:
During Reset (not software reset), the signal RMCK is not valid. If RMCK is used as device
clock, this must be taken into consideration.

4.4 uC Area

The microcontroller (uC) area mainly consists of the yC and some memory, and is not mandatory for a
MOST device. In the case of devices with a pC area, there may be applications that are tightly
coupled to the network activity. They need to realize a low standby-current Istgy, S0 in PowerOff mode
of the network, the yC must be switched off.

At the same time there are devices, which must be active even if there is no network activity. Here the
MC area must be connected to a continuous power supply.

In addition to that, there are devices, which are to be arranged in between. They are active without
network activity, but are not connected to continuous power (for example, the power supply of a CD
changer during eject of disc).

Specification Document © Copyright 1999 - 2005 MOST Cooperation
MOST Specification 05/2005 Page 207

MOST® MOST

Specification COOPERATION

4.5 Application Area

Application area refers to the application peripherals such as receivers, amplifiers, drives, etc. The
way of implementing an application area is very device-specific. In some devices, especially those
with application peripherals that have high power consumption, it makes sense to supply the
peripherals separately from the logic, i.e., the uC area and the MOST function area, in order to switch
them on and off separately. In other applications, the application area must be connected to a
continuous power supply.

If internal communication is required, the MOST Network with all devices connected to it is powered.
Since this may happen also in such cases where the vehicle is parked, the power consumption in this
communication mode (Logic_Only _Mode) must be kept as low as possible (not only in sleep mode).
This means, that it must be possible to remove the Application Area from power (if procurable).

4.6 Power Supply Area

Please note:
The voltage levels shown in this section here could vary between the systems. Therefore, they
are non-normative and not specified in detail. Binding values must be defined in the

specifications of the System Integrators. The definition and relation between voltage levels
can be found in section 4.7. This chapter describes the power supply for a device that is
usually active when the network is active, so a low standby-current Is;gy must be achieved.
This is the most complex case. Figure 4-4 shows an example for the implementation of a
Power Supply Area.

To meet these requirements, a MOST Network Interface Controller, microcontroller (uC), and
application peripherals are completely separated from power. In addition to that, the application
periphery is powered separately, so that it can be switched off although the logic is still running (e.g.,
drive).

The implementation of the power supply area, as shown in Figure 4-4, mainly consists of:

e Filter, unload-protection, EMI/EMC protection
e Micropower regulator (5V Cont.)

e SwitchToPower detector (optional)

e Power on logic

e Digital power supply (5V Dig)

e Application power supply (U App)

e Bad power condition comparator

e Reset generator

e Watchdog timer

Specification Document © Copyright 1999 - 2005 MOST Cooperation
Page 208 MOST Specification 05/2005

MOST®

MOST

Specification COOPERATION
Continous it . sA
Power (+) O liter icati
™ Unload Protection O’I/ Apg(l)lcvfs:)n O Uapp (Application Power Supply)
Ground O EMIEMC Protection |
|
1 I —<1 SA (Application Switch C)
_ : 5v
| Digital O 5V Dig (u.a. MOST & pC)
<=50pA :
: Bad Power U>Unomal > U = Usyper (HC)
| Condition
: Comparator ey £> U = Ucitical OF ULow (HC)
! 1
| =
g g A
[}
S H—o 5V Cont (u.a. Recei
MicroPower : ont (u.a. Receiver)
[}
Comparator :
U>ULow)}
I -
= Switch To —
Power >1
RStatys > —< Hold (uC)
eceiver
(Receiver) > SwitchToPower (uC)
> U > Uow (UC)
Manual >
5V
Reset 5V Digital
Digital
Reset _—
Watchdog Watchdog Generator > Reset (uC, MOST)
On/Off Timer

L

1L

Power Supply Area

<1 WDTrig (uC)

Figure 4-4: Block diagram of power supply area

Specification Document

© Copyright 1999 - 2005 MOST Cooperation
MOST Specification 05/2005

Page 209

MOST® MOST

Specification COOPERATION

Filter and EMI/EMC-Protection filters the power supply and protects the device from incoming
radiation, or it prevents the device from sending out radiation. The Unload-Protection provides the
overcoming of short periods of low voltage.

Connector Fuse Unload.
Protection
Continuous
power (+)

Figure 4-5: Input section of power supply area

The Micropower Regulator provides power supply for the receiving FOT unit with wake-up
functionality and of the Power On logic, if the device is switched off on an inactive bus. Furthermore, it
can be used to supply volatile memory devices. In total, the device has to meet a manufacturer-
specific standby current Istgy. In case of the devices that stay active on an inactive network, or that
become active from time to time on an inactive network, the Micropower Regulator must be
dimensioned to provide more power.

The SwitchToPower Detector is used for ring break diagnosis, where the location of an interruption
of the ring is localized. This is not done during normal operation, but in the car repair, or at the
assembly line. Note that the SwitchToPower Detector is optional.

Since the bus cannot work properly on a ring break, the devices must get a trigger in another way.
Such a trigger is set through a defined switching off of the power supply of all devices for some
seconds by a central power switch. The switched-off state should be maintained for some seconds,
because all devices should be completely unloaded.

Ring break diagnosis is started by switching on power by the central power switch. The
SwitchToPower detector recognizes that the device powered up, and generates a pulse, by which
power of the device stays activated for a certain time. After the reset phase, the micro controller (uC)
recognizes with the help of the SwitchToPower signal that the device was powered, and switches to
ring break diagnosis mode. Before this, Hold must be activated to prevent the device from being
switched off again.

If no communication is started on the network, the yC must deactivate Hold so the device can switch
back to sleep mode.

The SwitchToPower detector must be implemented so that the SwitchToPower pulse is generated
only if the power sinks below a certain threshold. Under no circumstances should short breakdowns
on the supply voltage (e.g., by the starter) lead to a SwitchToPower pulse.

Therefore the SwitchToPower detector gets armed only, if the device was separated from power for at
least 2 seconds, and at most 4 seconds (2 sec < t1 < 4 sec). Only then will it generate a pulse when
the device is connected to power. This must be made sure of with the help of suitable measures
(unload protection diode, and individual electrolyte capacitor at the power supply line of the detector).

Specification Document © Copyright 1999 - 2005 MOST Cooperation
Page 210 MOST Specification 05/2005

MOST® MOST

Specification COOPERATION

In addition to that, the SwitchToPower detector must supervise the power supply before unload
protection, since, caused by the switching off of all function areas, the voltage will decrease very slow.

The SwitchToPower pulse must have a minimum length t2, which must be long enough for the uC to
safely recognize the pulse.

This is shown in the figure below for ideal signals (vertical edges). The SwitchToPower detector
should be implemented at low cost, and in a way so that it works on ideal conditions as shown in the
figure below. It should not be tried (at high cost) to meet the timing exactly, even on non-ideal
conditions, since imprecise behavior of devices can be compensated for by the duration of the real
trigger, and it is not very critical if, on an alleged trigger (e.g., caused by starting the engine), a device
inadvertently switches to diagnosis mode.

Continuous
power (+)

. SwitchToPower

Switch Detector armed
To
Power I
2s<t1<4s tt2
<+“—> <+“——r
Figure 4-6: Timing of the output signal of the SwitchToPower detector depending on voltage at continuous power
input

The Power On Logic checks to see whether the bus is active, or if the SwitchToPower detector
indicates that the device is freshly connected to power. If, in addition to that, the U > U, comparator
indicates a sufficient supply voltage, switch SD is closed and Digital Power Supply is connected to
power. Digital Power Supply then supplies the MOST Network Interface Controller and the
microcontroller (UC). As soon as the uC is started, it keeps switch SD closed by an additional input to
the Power On Logic (Hold).

Later on, the uC decides if and when the application periphery (application area) will be powered, and
activates SA.

The U, comparator indicates whether the input voltage is above the U, range or not. It is
important to implement a hysteresis here, since when switching off the supply voltage due to low
voltage, the voltage at the input of the comparator will suddenly be increased again. Without
hysteresis, the device would be switched on again, leading to an oscillation of the U, comparator,
and of the entire digital supply voltage.

Please note:

The hysteresis must be implemented in a way that the output signal of the U ,, comparator is
switched off, when the voltage drops to U,,,. The output signal of the U, ., comparator must
then be switched on again only, if the voltage rises to Uyomar-

Specification Document © Copyright 1999 - 2005 MOST Cooperation
MOST Specification 05/2005 Page 211

MOST® MOST

Specification COOPERATION

The U, comparator must behave in a defined way, even if the voltage keeps decreasing and the
micro power regulator does not stabilize its output voltage, but follows the input voltage only. That
means that the U,,, comparator must prevent the device from switching on even when reaching low
voltages (e.g., < 2V...3V).

The Bad Power Condition comparator recognizes critical voltage (Uciiical) and super voltage (Usyper)
on the supply power, so that appropriate actions can be taken. For the Bad Power Condition signals,
a hysteresis is not mandatory, since they do not control switching off power. The signals are evaluated
only by the micro controller (uC).

The Reset Generator generates reset for the MOST Network Interface Controller and eventually for a
pC if available. It is mandatory for all devices! Possible sources for reset are:

e Device connected to power

e Transition between low voltage to normal operation
e Low voltage on power

e Manual reset (reset button)

e Watchdog timer

The maximum length of the reset pulse is 300ms.

If a uC is available, a Watchdog Timer (eventually with an integrated reset generator) is mandatory.
The watchdog timer initiates a reset at the reset generator, when not triggered by the uC for a certain
time (WDTrig). This closes the all-bypass of the MOST Network Interface Controller. Even if the
application processor does not restart, the device behaves in a neutral manner with respect to the bus.
If a device has no uC, no watchdog timer is required.

Please note:
It must be made sure, that the HOLD mechanism (by which the uC keeps the device powered)
is reset as well. The MOST Network Interface Controller can be reset by the uC as well.

Specification Document © Copyright 1999 - 2005 MOST Cooperation
Page 212 MOST Specification 05/2005

MOST® MOST

Specification COOPERATION

4.7 Voltage Levels

In general, a device in sleep mode must not wake the bus (light on), caused by low voltage or super
voltage. Four voltage ranges are defined:
Normal operation (Unormai):
Device works normally, all functions are within the specified tolerances.
Super voltage (Usyper):
The device is in a safe operation state, which must be defined for each device individually.
Critical voltage (Uc;itical):
The device is in a safe operation state, which must be defined for each device individually.
The Netinterface works normally, the device can communicate. On a recovery from this state,
the network does not need to be initialized again.
Low voltage (U ow):
The device is in a safe operation state, which must be defined for each device individually.
The voltage has dropped to a value where the device cannot communicate for long. The

Netinterface does not work any longer, so a device that cannot communicate safely has to
switch off light in a safe way.

The following relation holds between the different levels: Uiow < Ugriticat < Unormat < Usuper

A safe operation state means that the device must take measures for avoiding failure, overheating, or
destruction of its own or connected functional sections. In addition, it must switch to a state from
which it can resume working normally if normal voltage is restored.

Examples:

e Muting and eventually switching off of amplifiers (danger of overheating, protection of
loudspeakers when switching off caused by low voltage).

e Switching off the servo units of CD/MD player (protecting the optical PickUp).

Remarks:

1. The device must be able to work between Ucitical and Usyper, and the critical voltage area reaches
down to Up,,. It could be tried e.g., to enter Low Voltage as late as possible. Especially when
using switched power supplies, it can be possible to drop the Low Voltage threshold to e.g., 3 V.

2. Hysteresis ranges must be implemented for avoiding oscillating!

Specification Document © Copyright 1999 - 2005 MOST Cooperation
MOST Specification 05/2005 Page 213

MOST® MOST

Specification COOPERATION

Low voltage for a short period of time:

Some devices need a long time for initialization (Operating system, system communication...). If such
a device would be reset even at short pulses of low voltage, it needed to be initialized after that. The
interruption that would occur with respect to the entire system would be recognizable by the customer
(e.g., interruption of audio when starting the engine). Such a device should be able to survive short
Low Voltage periods, without the need of being re-initialized. Especially the initialization status of the
pMC must be secured. This may be done, e.g., by using buffer capacitors, unload protection diode, a
separate power supply for the digital section, releasing of the application peripherals, stopping the uC,
etc. Also the operation of the Netinterface can be reduced, e.g., by resetting the MOST Network
Interface Controller, which will then close its all-bypass (except a device containing the Timing
Master). The light should be kept switched on as long as possible, since then the rest of the system
would not be disturbed. After the Low Voltage period the MOST Network Interface Controller will be
re-initialized (in total < 100ms). For more information about the behavior of the software in case of
Low Voltage please refer to section 3.2.5.8 on page 149.

Specification Document © Copyright 1999 - 2005 MOST Cooperation
Page 214 MOST Specification 05/2005

MOST®

Specification

MOST

COOPERATION

5 Appendix A: Network Initialization

This Appendix contains some behavioral examples regarding Network Management.

Requirements

regarding Network Management behavior of the Network Master and the Network Slaves can be
found in section 3.2 and MOST Dynamic Specification.

5.1 Network Master Section

This section contains scenarios of the behavior of the Network Master during network initialization.

5.1.1 System Startup when a Central Registry is Available

This section contains an example of how the Network Master behaves when initializing the system

with a stored Central Registry.

1. Starting Situation:

Desired configuration:

Rx/TxLog FBlockID InstID
0x0101 AudioDiskPlayer 1
0x0102 AM/FMTuner 1
AudioDiskPlayer 2
0x0103 TVTuner 1
0x0104 AudioAmplifier 1
AudioAmplifier 2
Central Registry of last system run
Rx/TxLog FBlockID InstiD Available? Position
0x0101 AudioDiskPlayer 1
0x0102 AM/FMTuner 1
AudioDiskPlayer 2
0x0103 TVTuner 1
0x0104 AudioAmplifier 1
AudioAmplifier 2

2. System Startup - Checking Configuration:

Rx/TxLog FBlockID InstiD A le? Position
0x0101 AudioDiskPlayer 1 No
0x0102 AM/FMTuner 1 Yes 1
AudioDiskPlayer 2
0x0103 TVTuner 1 Yes 2
0x0104 AudioAmplifier 1 No
AudioAmplifier 2

= Broadcast Configuration.Status (OK)

3. Supplementary Registration: Device 0x0104 Joins Network
(either physical through NetworkChangeEvent, or logical); checking configuration

Rx/TxLog FBlockID InstiD A le? Position

0x0101 AudioDiskPlayer 1 No

0x0102 AM/FMTuner 1 Yes 1
AudioDiskPlayer 2

0x0103 TVTuner 1 Yes 2

0x0104 AudioAmplifier 1 Yes 3
AudioAmplifier 2

= Broadcast Configuration.Status (Control=New, AudioAmplifier.1, AudioAmplifier.2)

Specification Document

© Copyright 1999 - 2005 MOST Cooperation
MOST Specification 05/2005

Page 215

MOST®

Specification

MOST

COOPERATION

4. Shutdown: Normal Shutdown with ShutDown.Start;
Store error “Device 0x0101, AudioDiskPlayer.1 missed”

3b. Variant:

Un-initialized device OXFFFF joins network at node position 2; checking configuration;
recognizing un-initialized device in system; broadcast Configuration.Status (NotOK);
building addresses; building central registry

Rx/TxLog FBlockID InstID A Position

0x0101 AudioDiskPlayer 1 No

0x0102 AM/FMTuner 1 Yes 1
AudioDiskPlayer 2

0x0103 TVTuner 1 Yes 3

0x0104 AudioAmplifier 1 Yes 4
AudioAmplifier 2

0x0102 Speech 1 Yes 2
Recognition

= Broadcast Configuration.Status (OK)

Specification Document
Page 216

© Copyright 1999 - 2005 MOST Cooperation

MOST Specification 05/2005

MOST® MOST

Specification COOPERATION

5.1.2 Flow of System Initialization Process by the Network Master

The flow in Figure A-5-1 shows how the Network Master initializes the system. Refer also to Figure
A-5-2 for a flow of how the Network Master performs the configuration requests from the Network
Slaves during the system configuration.

C NetOn Event >

yes First address

initialization ?

NetworkChange Event
occurred

v

Set address in MOST Delay (twaitatternnce)
Network Interface Controller

<
l

A

Delete Central Registry

1 ‘

Broadcast:
ConfigurationStatus(NotOK) Check
N System Configuration.

Check all nodes first, then
missing nodes only

Derive logical node address
from position, store it, and
write it to the MOST Network
Interface Controller

A

Delay (tDeIanygRequesﬂ)
or

Delay (tDeIanygRequesQ)
4

A

yes Configuration

NotOK?

New information
received ?

Broadcast:
1st round:
Configuration.Status(OK)
Otherwise:
Configuration.Status(New/
Invalid,FBlockIDList)

[

b4

no

All nodes answered
request?

Normal Operation
(Application)

Figure A-5-1: Flow of initialization on application level in a NetworkMaster

Specification Document © Copyright 1999 - 2005 MOST Cooperation
MOST Specification 05/2005 Page 217

MOST®

Specification

MOST

COOPERATION

Checking System
Configuration

Node

already requested since
NetOn or NotOK?

Request FBlockIDs

Set Timer

yes

(twaitForAnswer)
————————————————————
no

Answer?

Un-initialized
NodeAddress 2

NodeAddress
available in old

Timeout?
bwvaitForanswer

yes

no

registry?

NodeAddress
duplicate?

NodeAddress
and function block
mismatch?

y

Enter in new Central |
Registry

' Node = Node + 1

) J
In case a node
caused NotOK the
third time, ignore
node until next
startup or next
network change
event.

y

Broadcast
Configuration.Status

(NotOK)

no

All nodes
requested?

yes

New information
received?

no Broadcast
Configuration.Status
(OK/New/Invalid)

Figure A-5-2: Flow in NetworkMaster during requesting system configuration

© Copyright 1999 - 2005 MOST Cooperation

Specification Document
Page 218

MOST Specification 05/2005

MOST® MOST

Specification COOPERATION

5.2 Network Slave Section

The flow in Figure A-5-3 shows how a Network Slave behaves during System Startup and when

receiving Configuration.Status messages.

Set Logical Node
Address of last run,
or OXFFFF in the
MOST Network
Interface Controller

]

Y

no

Configuration
Status received?

yes

Configuration Status
>

received
Y

no
Configuration
Status NotOK?

yes

Y

Derive Logical Node
Address

v

Clear De-central
Registry

v

Set Logical Node

Address in MOST

Network Interface
Controller

-l

Y

SystemCommunicationlnit
Init Notification..

Y

Normal operation
(Application)

Figure A-5-3: Flow of initialization on application level in a Network Slave

© Copyright 1999 - 2005 MOST Cooperation

Specification Document
MOST Specification 05/2005

Page 219

MOST® MOST

Specification COOPERATION

6 Appendix B: Synchronous Data Types

This appendix holds information of different synchronous data types.

Note: This information is only relevant until the “MOST Multimedia Streaming Specification” is
released.

Data type 0x00 Audio:

Here, the additional parameters Resolution, AudioChannels, Delay and Handle/Channels are
specified.

DataDescription = Resolution, AudioChannels, SrcDelay, Channels

Parameter Resolution (1 Byte) specifies the resolution of audio samples in Bytes. Parameter
AudioChannels (1 Byte) specifies the number of audio channels, e.g., 1 for mono, 2 for stereo etc.
Parameter SrcDelay (1 Byte) specifies the delay of the synchronous data with respect to the Timing
Master. Each MOST Network Interface Controller keeps track of the mode delay (refer to section
3.1.5.3 on page 120). In the last parameter, the single Channels (1 Byte per channel) are listed. The
first channel corresponds to the handle. If the source has not allocated channels at the moment, it
returns OxFF.

The MOST Network Interface Controller is able to receive many different audio formats and convert
them to its raw data format, or to generate many different audio formats from the transported raw data.
For audio transmissions, the following minimum appointments are valid:

e Audio-NF will be transported CD-DA compatible (Compact Disk Digital Audio)
e The sequence of channels is: Front left, front right, rear left, rear right. The most significant
Byte is transmitted first.

Examples:

16 Bit Stereo: Resolution = 0x02, Channels = 0x02,
Sequence on the bus: MSB left, LSB left, MSB right, LSB right.

24 Bit Stereo: Resolution = 0x03, Channels = 0x02,
Sequence on the bus: MSB left, central Byte left, LSB left, MSB right, central Byte
right, LSB right.

If the property Sourcelnfo is not implemented by the source, data type audio is assumed by default.

Specification Document © Copyright 1999 - 2005 MOST Cooperation
Page 220 MOST Specification 05/2005

MOST® MOST

Specification COOPERATION

Data type 0x01 CD ROM:

This data type describes CD-ROM raw data before being processed by a CD-ROM decoder. This
data might be of type audio, or CD-I, or Video-CD respectively.

DataDescription = Blockwidth, Channels

For data type CD-ROM, parameter “Blockwidth” is transmitted. It specifies the number of transmitted
Bytes per MOST frame.

Examples:

Single Speed CD: Blockwidth = 0x04
Double Speed CD: Blockwidth = 0x08

Per Default, Blockwidth = 0x04 will be assumed.

Specification Document © Copyright 1999 - 2005 MOST Cooperation
MOST Specification 05/2005 Page 221

MOST® MOST

Specification COOPERATION

7 Appendix C: List of Figures

Figure 1-1: MOST DOCUMENE STIUCIUIE......cciuiiiii ittt e e e e e enaeeas 19
Figure 2-1: Model 0f @ MOST GEVICEooiiiiiiiie ittt st e e e et ee e e s e e e snnnaeeesnnaeeas 23
Figure 2-2: Communication with a function via its function interface (FI)cccccooceiiiiiiiinnieee . 23
Figure 2-3: Structure of a function block consisting of functions classifiable as methods, properties and

o T o T SO ST PP PP PPPPURROPRN 25
Figure 2-4: Setting a property (temperature setting of a heating)cccccooeviiii e, 26
Figure 2-5: Reading a property (temperature setting of a heating) ..o, 27
Figure 2-6: Status report of property temperature setting ..., 27
Figure 2-7: Example for a function interface (F1)..........ocueoiiiiiii e 28
Figure 2-8: MOST NEtWOIK SEIVICEoiiiiiiiiiiiiiiie et 31
Figure 2-9: Ideal audIiOo SYSIEIMeiiiiiiiee ettt 32
Figure 2-10: Real audio SYSIEM ... it e e e e e e e ee e e e e 32
Figure 2-11: Delegation of functions of all audio components to one audio controller 33
Figure 2-12: Highest layer of the device MOdEl............ccuiiiiiiiiiiiiiie e 35
Figure 2-13: Device model for audio sources with player functionccoocciiiiiii i 36
Figure 2-14: Device model for audio sources without player functioncccooeeeiiiiiiiiiic e, 37
Figure 2-15: Processing of messages including error check on different layers.............ccccccvvveeeneenn. 49
Figure 2-16: Sequences when using Start with and without errorccoccii i, 50
Figure 2-17: Flow for handling communication of methods (slave’s Side)cccooceveiiiii i, 52
Figure 2-18: Flow for handling communication of methods (controller’s side)..........cccocoeiiiiiieinnen. 53
Figure 2-19: Virtual communication between two devices on application layer and real comm. via

L= 011) o <SPS 63
Figure 2-20: Device with MOST address CDC, a function block CD Player with FBlockID CD, and its

L1812 (o 3 RS 64
Figure 2-21: Communication between two devices via the different layers............ccccccoovciiiiicneennen. 65
Figure 2-22: Example for @ SIave dEVICEccooiuiiiiiiiiiie ettt e e 66
Figure 2-23: Virtual illustration of the controlled properties in the control device............ccccovveeeeieennns 67
Figure 2-24: Unambiguous assignment between protocol and variable.................ccccccooeiiiiiiiiienneeenn, 68
Figure 2-25: Controlling MUItIPIE AEVICESuiiiiiiiiee et a e e re e e e 69
Figure 2-26: Controlling two identical deViCes............ooiuiiiiiiiii e 70
Figure 2-27: Hierarchical structure of the protocol filter (command interpreter)cccccovvieiiinen. 71
Figure 2-28: Routing answers in case of multiple tasks (in one controller) using one function 72
Figure 2-29: Reading the function blocks of a device from NetBlockccccoiiiiii, 74
Figure 2-30: Requesting the functions contained in an application blockccccoiiiiiiiiiiiic e 75
Figure 2-31: Requesting the function interface of @ fuNCLION............ccooviiiiiiii e, 76

Figure 2-32: Meaning of position x in record (above) and of position y in a record with array (below). 91
Figure 2-33: Position x in case of an array of basic type (left), y in case of an array of record (right).. 92

Figure 3-1: Structure of blocks and frames on the MOST bus.........ccccoviiiiiiiii i, 112
Figure 3-2: Layer model Of @ AEVICEcoiii ittt a e e e e e e e e e e 121
Figure 3-3: Flow chart “Overview of the states in Netinterface”.............ccccccoeiiiii e, 123
Figure 3-4: Behavior of a Master device in state Netinterfacelnit.............ccocooiiiiii 125
Figure 3-5: Behavior of a waking Slave device in state Netinterfacelnit...............cccccoooii 126
Figure 3-6: Behavior of a woken Slave device in state Netinterfacelnit.............cccoceiiiiiinn, 127
Figure 3-7: Examples of the behavior when unlocks OCCUT.............cooiiiiiiiiiii e 129
Figure 3-8: Behavior in state NetinterfaceNormalOperationccocceiiiiiiiii e 130
Figure 3-9: Localizing a fatal error with the help of ring break diagnosis.c.cccceiviiieiiniienecnnnen. 131
Figure 3-10: Behavior during ring break diagnosis in a Timing Master (part 1).........ccccocevevvieneennnen. 133
Figure 3-11: Behavior during ring break diagnosis in a Slave (part 1).......cccccccveiiiiieeiiciee e 134
Figure 3-12: Behavior during ring break diagnosis in a Timing Master and Slave (part 2)................. 135
Figure 3-13: Behavior during ring break diagnosis in a Timing Master and Slave (part 3)................. 136
Figure 3-14: Example (2 devices) for waking of the MOST network via light on the network............. 138
Figure 3-15: Switching off MOST Network via starting method ShutDown in every NetBlock, and

signaling to every application, and switching off lightccciiii 140
Figure 3-16: Prevention of switching off MOST Network via ShutDown.Result (Suspend)................ 140
Figure 3-17: Behavior of a device depending on supply voltagecccoociiiiiiiiiiiiiniiee e 149
FIGUIE 3-18: AlEIt LEVEIS ...t e e 150
Specification Document © Copyright 1999 - 2005 MOST Cooperation

Page 222 MOST Specification 05/2005

MOST® MOST

Specification CODPERATION
Figure 3-19: States of the network are shown, as well as the status of the Central Registry............. 155
Figure 3-20: Seeking the logical address of a communication partner............ccccococeeiiiee e, 174
Figure 3-21: Possible mechanism to adapt transfer rates to the speed of a data sink....................... 175
Figure 3-22: Network Service: Services for control channelcooccveiiiiii i 176
Figure 3-23: Network Service for the synchronous channelc.cccccieiiiiiii e, 178
Figure 3-24: Network Service: Services for the asynchronous channelcccccccooiiiii e, 187
Figure 3-25: Building a synchronous connection step by Step........cccccviiiiieiiiiiiiiiiie e 192
Figure 3-26: Step by step removal of a synchronous connectionccccccoeveciiiiiiiee e, 194
Figure 3-27: Secondary NOde, SCENAO 1........oooiiiiiiiiiiiie e e 200
Figure 3-28: Secondary NOde, SCENAO 2.........coouiiiiiiiiiie e 201
Figure 3-29: Secondary Node, SCENAIO 3........ccoiiiiiiiiiiie e 202
Figure 4-1: Example of the structure of a MOST device, the different functional areas and their

1 (=3 7= T =Y PR 203
Figure 4-2: Optical INtEIfAaCe @ra.........c..uiiiiiiiieiiiee et et e e e e 204
Figure 4-3: Connecting the FOTSs to the plug of the device via “pig tail”...........cccoveeiiieie i, 206
Figure 4-4: Block diagram of pOWEr SUPPIY @r€a........ccccuuireiiiiiieeiiiieeeeiiee e siee e etee e ee e neea e e 209
Figure 4-5: Input section of POWET SUPPIY @r€ac.cciiiiiuiiiiiiie ettt e e e e e 210
Figure 4-6: Timing of the output signal of the SwitchToPower detector depending on voltage at

CONLINUOUS POWET INMPULuviiiiiie et e e e e e e e e e e e e e et b e e e e e aeeeseassbaeeeaaeeesansnteaaaeas 211
Figure A-5-1: Flow of initialization on application level in a NetworkMasterccccoccociiiiiiennnnn. 217
Figure A-5-2: Flow in NetworkMaster during requesting system configuration...............ccccooceiennnen. 218
Figure A-5-3: Flow of initialization on application level in a Network Slaveccccocooiiiiininnnnen. 219
Specification Document © Copyright 1999 - 2005 MOST Cooperation

MOST Specification 05/2005 Page 223

MOST® MOST

Specification COOPERATION

8 Appendix D: List of Tables

Table 2-1: Application example for the principle of derived deVviCesccccovveiiiiiiiiiiiiiiieiee e, 36
Table 2-2: FBIOCKIDS (PAE 1) ..ooiveiiieiiiiee et e ettt ettt e ettt e e e sttt e e e ettt e e e eanteeeeesnteeeessntaeesanreeeaeans 39
Table 2-3: FBIOCKIDS (DAt 2)veiiiiiiiiie ettt ste e et e e e sttt e e e sttt e e e easteeeesantaeeessntaeesanseeeaeans 40
Table 2-4: OPTypes for properties and Methodsuvviiiiiii i 44
Table 2-5: Error codes and additional information (Part 1)..........ccccomiiiiie i 45
Table 2-6: Error codes and additional information (Part 2)...........cccouiiiiiiee i 46
Table 2-7: Classes of functions with a single parameter............ccocoi i, 77
Table 2-8: The different modes of the bit field Channel Type ... 78
Table 2-9: AVaAIlabIe UNIESooii it e e e e e e e e e e e s nte e e e e e e nnnneees 82
Table 2-10: Classes of functions with a multiple parameters.cccooo i 89
Table 2-11: Classes of functions for a method. ... 105
Table 2-12: Notification matrix (x = notification activated)cccoeeiiiiiiiii e, 107
Table 2-13: Parameter CONIIOL..........ocuuiiiiiieiee ettt e e s e e st e e e snneaesnneeeas 108
Table 2-14: Protocols with different controls for making entries in the notification matrix, and the

ST 0) T Te IR =T 0L T TSRS 108
Table 3-1: Structure of the MOST frameooo i 112
Table 3-2: Structure of a frame in the asynchronous area (48 Bytes data link layer)......................... 115
Table 3-3: Structure of a frame in the asynchronous area (alternative data link layer) 116
Table 3-4: Structure of a control data frame............oooi i 117
Table 3-5: Addressing modes VS. addreSSs FANGE.......cuuuiiaiiiiiie e 119
Table 3-6: Events in state NetinterfacePowerOff........ ... 124
Table 3-7: Events in state Netinterfacelnito e 124
Table 3-8: Events in state NetinterfaceNormalOperation ... 128
Table 3-9: Events in state NetInterfaceRingBreakDiagnosiscoccceveiiiiiiiiiiiee e 131
Table 3-10: Events in System State NotOK (refer to Figure 3-19).......cccceviiiiiiiiiii e 156
Table 3-11: Events in System State OK (refer to Figure 3-19)oooiiiiiii i, 157
Table 3-12: Example of a Central REGISIIYveviiiiiiiii e 159
Table 3-13: Example of a Decentral REGISIIY........coiiiiiiiiiiiiiiiee et 166
Table 3-14: Functions in NetBlock that handle addresses..........cccccvviiiiiiiii e 172
Table 3-15: Functions in ConnectionMaster in conjunction with the administration of synchronous

o]] 1= Tox 1 o] o 1= SRR 191
Table 3-16: TIMING DefiNItIONS.........cooiiiiii e 199
Specification Document © Copyright 1999 - 2005 MOST Cooperation

Page 224 MOST Specification 05/2005

MOST® MOST

Specification COOPERATION

INDEX

M
I ettt ettt — e e e e tteeeeeatete e e ——eeeatteeeaatteeeaaateeeeasbeeeeasteeeaanaeeeeanteeeataeeeanteeeasbeeeeanteeeeanneeeanreen 207
SO =Y TSP UPTPRP 203, 207
7
FA A O] 1] o F= 1 =1 (o SO PSP PP P PP PR PPRP 211
A
ADITEYTOWVAKE. ...ttt ettt e ettt e e et e e e et e e e e ase e e e s s beeeeeasbeeesaaseeeesabeeeansseeeansaeaesnsseeeasseeennnees 138
Y oo TP UP PR SPTPPPPPP 55
oo 7 o SO PSSP 55
Y o1] 0] (RSO RRP 102
4 SR 21
ACHIVIEY DBIECHION ...t e et e et e s bt e e et e e e s e e e e s nr e e e e nne e e s 204
Addressing
Modes (MOST Network Interface CONrOlIEr).........c.uviiiiiiiiiie e 119
MOST Network INterface CONIOIE...........ooi ettt e e e e e et e e e e e e s snaeeeeeesasneeeeeaaeaannes 119
[N L= Ao PP S 171
PRYSICAI AQAIESS ...ttt e e e ettt e e e e e e e bt e e eee e e s e s taaseeaaeesaansseaeeeeaanssseeaaeeeaansrrneeaeeeaanne 174
I 1 S 186
L3 o = PP PTPPPRRR 110, 212
Allocating SYNChronoUS ChaNNEISoiiiiiiiiie et e et sr e e b e e enne e nnes 120
F | (oo i o T o R 120
1 RS RR 176
LY o] o] [oz= Y i o] o AN Y= PSP P PRSPPI 203, 208
F Yo o] o= Y i o] g T =1y (o] O PSP OUPR 47
APPIICAtION MESSAQE SEIVICE.ueeiiiiiiiiiieeee ettt e e e e et e e e e e s e taeeeeeeseesataeeeaasnnsseeeeaeeeanssaneeaaeas 176
Area
Y o] o] [Tr= e o 1 - - S 203, 208
MICTO CONIOIET ATCQ...... .o et e e e e et e e e e e et e e e e e e e e e ena e eeeaaaes 203, 207
MOST FUNCHON ATeeeeeeeeeeeeee ettt e e ettt e e e e e e ettt e e e e e e e e et a e e e e e e eesbaeeeeeeeeessaananeaneeees 203, 207
(O o) i[oz= 1l 101 (=14 7= ToTc 1 N Y- TSRO PPR 203, 204
POWET SUPPIY ATB@.... . ittt et e e ekttt e et et e e s b et e e e st et e s et e e s abneeeeanbeeenan 203, 208
F N4 - 1SR RRR PP 89, 92
F =V 1T [1RSSR 98
Y0 £ LT N 4 = PP 97
ST =Y =Y (1o Lo OO SS 94
= 1A o (o PRSP 98
ASYNCAIONOUS CRANNEI ..ottt et e e oottt e e e e e e e ntaeeeeaa e e s e neaeeeeeaannsseeeaeaaaannnneeaaaaannn 22
ASYNCAIONOUS DALA ...ttt e e oottt e e e e e st bt e e e e e e e s s naeeeeeaeeeaanaeaeesaannnnneaeaaeaaann 114, 115
Asynchronous Data TranSMISSION SEIVICEcocuuiiiiiiiiiiiiiie ettt e e et e e 186
B
Bad Power Condition COMPArator.............coiiiiuiiiiiiie ettt e e e ettt e e e e e st ee e e e e e e ssaaabeeeeeaeeesssnssaeeeseassneneaeessannes 212
L2 T AT/ o O 189
BandWidth (SYNCH. / ASYNC.) ...ttt e ettt e e ettt e e et e e e e mtee e e e neeeeeenseeeaseeeeeanseeeeenneeeeanneeenn 22
2 1 T= o OSSR 58
21 RSP R 77, 86
2] oo SRS SO SUR S ST 111
[ToTo] L= T o I PRSP SPRRR 58
[T o | =1 o SRS 77,85
2T} 1 (o 1o I R 100
[To T o F= T PP 113, 189
L2 ToT0 g o F=T VA B T=T Yol] o) (o] PRSP URPTROY 22,113, 189
2T o =T o= T SO U PU SR UPPRRT 119
2] o T=To [or=1s] AV [o [£ <Y1 T TR 171,172
Specification Document © Copyright 1999 - 2005 MOST Cooperation

MOST Specification 05/2005 Page 225

MOST® MOST

Specification CODPERATION
21071 o 1S} g TeT07 o] o =T 1 o] o OSSP PT PRSPPI 190
Bypass
AL BYPASS uttiiiiie e e ettt e e e ettt e e e e e e et e e eeeeee e h————eeeee e e e a————teaaeeeaaata——eeeeeeaaataraeeeaaaartareaeeeeannrraraaaean 110, 212
SOUICE DAt@ BYPASS ...eiiiiiiiiiiiiiiii e ettt e ettt e e e e e ettt e e e e e e st a e e e e e e e s asbaaeeaaeeeaaaanteeeeaaanarraneaaeeaaanrrnaaeaean 110
C
107 1= (oo IR PO P PP UP R PUPPP 62
(07T 01T I =T 1] {2 USRS SPRRR 74,147, 215
(4 0 F= T 1 1= PR PPRRT 120
LT 1S T RSP 120
(03 4= o o T=T I ooz o o T PRSP 120
107 TSR 79
I TS 79
L0071V S 176
(7] 410 8 g o= i{o] o FU RPN 63
Comparator
T N e —e e e e t—eeeee——eeeea—eeeeaateteeaateeeeasbeeeeataeeeaasteeeeasteeeeasreeabeeeeataeeeaanteeeeanreeeaanreeeans 211
(0] a e T=Te1a [g LY =TS Y PP PPRRT 190
(7o) a1 (o] IO 5 =T o 0 =Y 1 USSR 21
(7o) a1 o] W= £= T) (=Y £ Y SRR 117
0TS o3 4 o) 4 PSPt 117
=T 01 TP SOTPPPRRRN 117
Control Message
Addressing (MOST Network Interface Controller)ooo i 119
CONLIOl MESSAGE SEIVICEeeiiiiiiiiei ittt e et ea et e e st e e e a bt e e aaaee s eab et e e eabb e e e eanne e e naneee 176
Control MesSaging INTEITACEuiiiii ettt e et e e e ene e e 117
BT Tor ¢ o) (o] PSP UOTPPUPRRN 117
L= 0 T RSP 117
107001 o] 1 1= SRR 24
L7 OSSR 21,115
(==Y (=Y = 1A AT T (o ST OUPRT 98
(07 g1 (Ter=T Y o] | =T =SS PERR 149, 212
CritiCal VOIAGE RANGE ..ottt h et e e bt e eab et e e e e e e et b e e e ebne e e nnees 213
(07 571 = | I PSP P P PRP PP PR 207
D
- | = PP SPRPRN 56
[L= B IR g1 S == PP PPRRP 186
Data Transport IN A MOST SYSIEMcoo it e et e e st e snn e e e sneee s 111
(D= T Y o 1= TP T SO P PP PT PP SOPPPPPPIN 56
21 1= Lo SRS OP U PPRRO 58
[To o] (=T T o ISP 58
= 01 o 4 OO PP PP POPTPPPPPPN 58
ST (o0 =Te N 21 (YU PP 59
1T 1= I 1o 3 T OSSR 59
RS0 a1 T0 BT T OO STS 59
T (Y= o o PSR 60
{1 o PP TP PRSP PP PP UTPPPPUPRPN 60
UNSIGNEA BYLE ...ttt e a bttt e e bt e bttt e e eh bt e b et e e b et e b e e e nb e e 58
(81T o g TTe [o] o T RO PRSP ROPPRO 59
L LTS o 0 T=T0 IR o o PP 59
[=To (=T 10 1=T o | PP PP PO PPRTPPPPPPN 55
== PP PPRRTN 120
Delay COMPENSALIONoeiiiiiieiiiiee ettt e et e e e sttt e e e eeee e et eeeeamtee e e e neeeeeamteeeeanseeeeanseeasseeeeanseeesanneeeeannenean 184
(D=1 =T I Lo o RO T SO P PP PP TP PTOUUPPPPPI 32
DEHAFBIOCKIDLISTtieeeiiiie ettt et e e ettt e ettt e e et e e e e enteeeeemneeeeensaeeeaanseeeenseeeasseeeeanseeeennneeeeannnnenn 147
DEIIVING DBVICES.....ce ittt ettt ettt e e h et e e et e oo bttt e oo h bt e e e ekt e eas et e e e b b e e e en et e e nane e e e anneeean 35
D ESIrOYAITAYVVINTOW ...ttt ettt e e ettt oo bttt e oo a et e e et et e e e st e e ek b e e e e anbe e e e saneeeesnneeean 98
DIBVICE ..eeeieee ettt e oottt e e e e e e e —eeeeeeeeeaaattateeeeeeeaatatteeeeeeeaaateeaeeeaantteeeeeeeeaantbaneaaaeeaaannes 23
DEVICE HIBIAICNY ...ttt st s s s s s e e e s s s e snnnemnnnnnnnnee 35
(=YY Tt Y= 1118 g o3 o] o O SP 48
[T T =Y | PP UPRPR 38
DeVIiCeNOrMAIOPEIAtIONcooiiiiiiiiieeie ettt e e ettt e e e e e e et ta e e e e e e e eeatatseeeaeeeeassaeeaeeeseanssseeeaeaesanes 122
DEVICEPOWEIONT ...ttt oottt e e e e e oo etae et e e e e e e e aaaeeeeeaaeeaaannseeeeesaansneeeaeeeeaaannnneaaaaaeaane 122
Specification Document © Copyright 1999 - 2005 MOST Cooperation

Page 226 MOST Specification 05/2005

MOST® MOST

Specification CODPERATION
DEVICESTANABY ...ttt b e a et e e b et e e aa bt eene e e e anaee s 122
(D] E= o T L] TSSOSO PSPPI 131
Diagnosis ErrOr SNUE DOWNcooiiiieiiee et e ettt e e e e e e st e e e e e e s esabeaeeeeeeseasasaeeaeeeseansnnneeaeeesannes 131
(D] E=Te gl T S 2{=Y= o YA PP P PSSP PPRRTN 131
[E= o T 1]] = 1 O 124
[To L c= T 01T S T o] o O 211
50 1. o PP USPPRRTN 101
DYNAMIC AITAY ...ttt e e et e e et e e ok et e e at et e o b e e e e e ea b et e e et e e eanee e e e b b e e e e n b e e e e eann e e e e nneeean 95
L T I N o 1= USSP 95
DYNAMIC BERAVIOT ...ttt h et e e ettt e e bt e e e b e e e e aab et e e eane e e e naneee s 121
E
= T=Tod (g o= I Y] o T=] PP PPRRT 110
Y Y (@ o (=Y (T o O 210
=g o1V 1] oI O TSP PT PP POPPP PRI 60
End Line
DYNAMIC AITAY ...ttt ettt ettt oottt e o sttt e e 1a b et e oot bt e oo st e e e e ea b et e eb et e e e ane e e e s bbe e e e nte e e e ane s 95
3T o USSP UPRRRN 58
[o101 0 011 = 1] o 77, 84
=T (o) 45, 50, 54, 55
Application Error
DoAY o= Y = 10 g o (T o PSS 48
Error SECONAANY NOGE ..ottt e et e e et e e s s e e st e et et e e enneeesnneeeas 48
GeNEral EXECULION EFTOF ittt ettt e e e e e ettt e e e e e e e s s be et eeaeae s e nanseeeeaaannsbeeeaaeeaannnneeeas 47
1Y L] (g ToTe I Y o Yo (=T R PSPPI 49
[1= 1401 (=Tl =y o) PP SPPRR 47
S T=Te aaTT ol e=Y o T = o o] NSO UPPRINt 48
SPECITIC EXECULION EFTON ..ottt e e e e e et e e e e e e s e b e e e e e e eeasassaeaeessnsbaeeaaeeeannens 47
Temporarily Not AVailable EFTOr..... ... ittt e e e e e e ee e s s nene e e e e e e eanneee 47
Fatal Error (NEIWOTK)cooi ettt et e e et e e et e e e smne e e e e nteeeenseeeennneeeeaneeeeenns 143, 144
Handling INn ConNECioN MASEENoi it 190
101101 (=3 W0 T o1 SRS RSURRN 46
Managing Errors (NETWOTK)..........eei ittt ettt e et sae e et e e e e ne e e e nneee 143
Network Change EVEnt (NEIWOIK)ooiiiiiiiiii et 143
Y1 = N = (o] S PP PP 46
L8]] [o ot [(L= A7 o 4 4 I OO PRPPTPP 143, 145
RV o] 1 =To T o 1T 1= Ao o) SR 143
Error ChecKing (FIOW CRAIt)ooiiiiiieeiiie et e st e e et e e e et e e e ettt e e e amee e e e smneeenneeeeeanseeeeenneeeeannneeenn 49
Error Device MalfUNCHIONo i ettt e e e e ettt e e e e e e et aeeeeea e e e sasbeeeaaeeaaannsseneaaaeaaannnes 48
=Ly CoT 1Y/ =1 (g ToTo I Y o o] (=Y IF RS PSURRN 49
ErrOr SECONAAIY NOGE ...ttt ettt ekt e e ettt e e ae e e e b bt e e e nbe e e s eaneeeesnneeean 48
Error SEMENTAtION EITOToo ittt et e e ettt e e bt e e bt e e e aate e e sanre e e anneee s 48
o] T T Y o T O 128
= (o] /Yo G PP PR POPUPPPPPPN 54
[T=T5 = TR 186, 188
A=Y | 25, 27
Diagnosis Error SNUE DOWNoiiiiii ettt ettt e et rr e e s b e e e e nr e e e s 131
DIagNOSIS REAAY ..ottt ettt e et 131
DIAGNOSISSTA ... et e e e et e et e e b e e e 124
EFTOr SNUE DOWN ...ttt e oottt e e e e e e et a et e eaeee s anbeaeeeeaee s e nsseseeeeaanssseeeaeesaansssseeaeesaannes 128
LT = o S 11 0 T 1V o U UOTPPPRPRN 124
T =T To | PP PPRPPPUPRN 124
NN =3 T RSP R 128
[N 0T T TS UL o1V o PR 128
=14 (6] o T USROS 124
Lo To] 1= o | (RS PURRRR 57
F
Fatal ErrOr (NEIWOIK) ...ttt e ettt s et e e st esab e e e nnbn e e e aabeeeens 143, 144
FBIOCK .ttt ettt ettt b et h bt E e h e E e ea et bt e he e eh e e b e e bt e b e e be e e eanee e 24,38
FBIOCKID ...ttt ettt ettt bt e bt e b e e bt e ekt e b et e bt e be e et n e nan e e neneene e 24,38, 39, 74
I OO O PP PP PP UPR PR PPPPR 39
o I U Tor (1] o I Lo (=T = o7) PSSR 28
] Y PRSPPSO OUPPTRURURN 210
Specification Document © Copyright 1999 - 2005 MOST Cooperation

MOST Specification 05/2005 Page 227

MOST® MOST

Specification CODPERATION
[SRRSO 24, 38, 42
RANGES ..o b h e e e e b bt ne e b e e e e b e anes 42
FREIDIS ettt ettt ettt e e oottt e e e e e e et — e eeeeeeeeaa——e—eeeeeaaaath——teaeeeeaathe—teeeeeeaaashaaeeeaannnaeeeaeeeaaannrareeaeeeaaannrreeees 75
= T 1 PPN 77
O SRRSO URRTRRROPP 204
[T 1r= 1 0 1 1= 3 111, 117
U a1 [o PO 25
[T BLeTelN 4 g1T a1 =1 o] o NSRS 62
(VT o7 (o] T (L I PP PP PP PP 24, 38
(Vg leriTo] T =1 o o [RPPPPPPPPNE 23
VLo Tori o] g OF= =1 (o Yo HO PSSO 62
Function Class
Y = PP PUPRPPNE 92
1 STy S OO P TR ROPPPPUP 77, 86
2 ToTo] | =11 [IO USROS OR PSR 77, 85
DYNAMIC AITAY ...ttt ettt e e ettt e e st e e oa et e e ek E et oo ab et e e ea b e e e ebe e e e e b e e e e s b ne e e e nre e e e nanees 95
L= 1 g1 = 1 (o] o [77, 84
FOP MEINOAS ...ttt nnsnsnsnsnsssssssssssssssssssnnsssnrnsnrnnnns 105
[0 T L - PP 97
I U0] 0= OO 77, 81
[L=Too] o [OOSR 90
S o] o T O U U P PRUTRRRPPO 77,80
=) SRR 77,83
[[aTe1 (o] T [0} (=T 7= o] YO 23, 28,76
G
GENEral EXECULION EITONo 47
[R 54
(1Y {] g (T 7= o7 55
(€] o oI Ao Lo =TT O RSO P U PRUTRRRPPP 171,172
H
Hardware Design Rules (Optical INterface)ooouiiiiiiiiii e 205
L (=T =T 11 PO SROTPPTUPPPRPI 34
HIGN LEVEI REIIHES ...ttt e e e e e ettt e e e e e e s et ee e e e e e e e easstseeeessnsasaeeeeeesaanssneneaeeesaanes 173
A PSS PPPPPRRN 24
[o1 [o 1Y/ =Yl o T=T a1] o FN SRR 212
[0T aa b= Ta Y F= o o1 TN g (=Y 7= Lo Y 24
L ST G (=TI PR UPPRRT 211
|
L aTel (=10 0= o | TR 55
Lo LI =y o TR UL o Vo LSRR 124
a1 =TT | SO USTRRPPP 124
LT {5 PO 41
(191 (T g 7=To1 Y 55
Interface for SYNChronous SOUICE Data............cooiiiiiiiiiiii et e e e e 114
P X ettt ———eeeeeeeeiateeeeeeeeeaeeteeteeeeeeseaatttteeeteeeeaaiieeeeeeaaiattettaaeeaaaitrateeaeaeaaanrreees 188
L
[T g T o [PRSP PPPPTNt 121
[T oo 11 T PO PPPPPRRN 56
T 0 3 O 143
Lock
=1 o] [OOSR 124, 126, 132
LOGIC_ONIY_IMOGE....... .ttt ettt e ettt e e et e ek et e e et et e e s ne e e sk e e e e anb e e e e eanneeenaneee s 208
(oo o7 Ao [0 [(=73 PP RSP 171,174
(o) T N - SO SRR PPRPI 97
LOW LEVEI REIMES ...t e s e e e eaeaaaaaaaaaaaaaaasasaaaanssssssssssssssssssssnsnsnrnrnrnrnns 173
(01 o] =T [PRSPPI 149, 211
(01T A o] 7=To [IN = o o [S PP R PPRRT 213
Specification Document © Copyright 1999 - 2005 MOST Cooperation

Page 228 MOST Specification 05/2005

MOST® MOST

Specification CODPERATION
M
IMAIMIAC ...ttt e oottt e e e e e et e ettt eee e e e s saetaeeeeee e e s asbaeeeeaeeesassseaeeeeeeeaannntaeaeeeaantaeeeaeeeeaaanrnneaeaeeeaanes 188
=T (= PP 110
T STS7= T [0 [1Tz L4 [) o O 107
Message Sink
OVEIIOAA 175
1= d T T OSSO OPPPUPPPPPPPPPPPPRE 25
METNOA ADOIEA et aaansanannnnnnnnnnsssssssssssssssssssnsnnssnsnnnnnnne 49
1Y 111 Lo T = PR TOPUPRPRRN 71
MICTO CONIOIEI ATCQ........ ettt e e e et e e e e e e e et e e e e e et eaa e eeeeeeeeeeeeasanaeeeaenees 203, 207
Y Loy o] oLl a=Te U] F= o PP PPRPTN 210
MOTE INFOMMALION......ceii ettt e e et e e e e e e e et a e e e e e e e e eeaaeseeseeaaatbeeeeeeeeeasnsbeneeaaeaennnsrnneas 2
MOST Asynchronous Medium ACCESS CONIIOL..........coiiiiiiiiiie et e e e e aneee s 188
IMOST DBVICE ...ttt et e ettt e e e e e e ettt et e e e e e eeaatbeeeeeeeee e asbseseaeeeesasssseesssaasasseeeaaeseasnraeneaaeas 23,121
MO ST FraAME ... e e e e e nsassssssssssnsnsnsnsnnnsnnnsnnnnnnnns 111
(= To W g Lo F= TV B LT T o) o O TP PP PP PP 113
PrEAMDIE ...eeiieieettit et naaanananananaaeaeeeeeseseasestttarttataratrrararnrnrnrnrarnns 113
Y (0 o (U] (=Y) PSPPI 112
IMOST FUNCLON ATeeeiiieeeeeeee ettt et e e e e e e et e e e e e e e e ea e e e e e e eeaeaeeeeeeeeeeeessaaaeeeeeeees 203, 207
Y (@ 1S I 1o | T o) oo o S 177,187
MOST Network INterface CONLIOIIET............cooiiiiieieee e e e et e e e e e e e st ae e e e s eenbareeeaeeeaaanes 110
MOST SYSEEM SEIVICES ...ttt e et e st e e e et e e e st et e e an et e et et e s aate e e e eaneeeesnneeean 31
Y Lo T=T N = YRR EURRN 97
N
[N S PRSPPI 21,175
=T 01PN 79
N[0S = 1 TSP PR OO PPRTRRNt 188
NELINEEITACE ... e et e ae e e e eeeeeeeaa e eeeeeaees 121,123
LI LY LT 0T 7= o7 Y | T T OPRUOUPRPPPRPRE 124
Nt INEEITACEP OWEIOTT ... e e et ssssssnsnsnsssnnnsnnnnnnnnnnnns 124
NEEONEVENT ... et e e e e e e e e e e ansasananssnnnnnssnnsnsssnsnssssssssssssssssssssssnsnsssnrnnnrnns 128
Network
S N1 (o] a1 e T @ 3 PRSPPI 139
LA = 1L T TSSO PPPRRR PP 138
Network Change EVENt (NETWOTK)cooi ittt e e e e e et e e e s mne e e e e s e e aneeeeeenneeeeanneeean 143
INEEWOIK SEIVICE ...eeeiiiiiiiieeeee ettt e ettt e e e e e e et e e e e e e e e e setaaaeeeeeeeseasssseseeeesassasaeeeeeesaanssseneaeeesanes 121
INOAE AQAIESS ... e aaaaaaaasaaaaassssnsssnsssnsnsnsnsnnnsnnnnnrnrnnnns 171
INOAE POSIHION ... asessasssssssssnsssnsnsnsnnnnnsnsnnnns 119
[N LoTe [oR o T=Y (o] o X0 [0 [<Y1 120, 171
Normal Operation (VOIage RANGE)ccoouiiiiiiiii ittt e e es 213
[N [o) g aE= 1] 418 3 1o 1V o PSR PPPPTNt 128
[N o) g aE= 1 (@] o1=T =1 i o] o PP PSSP PPRPTN 128
[\ Lo {1 {Toz= 1 1To) s I T TR 25, 107
[N o] el {Tor=Y ol g 1Y F= (g PP SO PPURRRNt 107
LI IS (=T o TSP UUURPPRRR 57, 81
LA LTI =Y 4T o o PPN 60
[VT g 0] 0= SRR 77, 81
(o)
(0] o)1= To: PP SOPRP 42
(©]1=T = 1o o [S PP UOSPPURRRNt 144
(0 oT=T =T T o T Y] o =SOSR 24, 38
(O]) ([er= 1M [a1 (=14 £= LTSN N - SRR 203, 204
OPpLical POWET BUAGEL ...ttt et e e e bt e ettt e e e et e e e et e e enne e e nanees 205
OPIPWISWITCR ... ettt h bt e ettt e e s hb et e e et e ab et e e eab et e e et b e e e eanne e e nanees 205
(O] S 1Y o LTSS PU PP ROPRP 24, 38, 44
I PP PPRPP 44
(O] Y o 1= S SRRSO 79
OVErload IN A MESSAGE SINKueiiiiiiiie et e e st e e et e e e st e e e et e e e aaaeeeeeaneeeeeanteeeeaseeeanneeeeanneeeeanseeeanees 175
Specification Document © Copyright 1999 - 2005 MOST Cooperation

MOST Specification 05/2005 Page 229

MOST® MOST

Specification CODPERATION
P
(o= 101 (=1 D=] = PO 114, 115
Accessing (MOST Network Interface CONtroller)cueveeiiiieiiee e e 185
L= L= a1 (=T o] PP SUPRRN 47
o T LTI 11 =Y PR UPPRRN 205
PRYSICAI POSIHION ...ttt e oo oottt e e e e e e e ta e et e e e e e e aanaeteeee e e e nsaeeeaeaeeaaannnneaeaaaeaannes 171
Lo T I | OSSOSO PR SURSROT 206
L T SO OUR SRR 207
Lo T[] o TR P PP PRSP PPPPPN 90
oA =T @ T oI o T | oSS PPRPTN 211
POWET SUPPIY ATBA ettt ettt e e ettt e ettt e e ettt e e e st e e e anseeeesmneeeeenteeeeamneeeeanneeeanseeeeanneeeeanneeenn 203, 208
Lo Ty 1V =] (=T P EPP O PPRRT 139
(== 0] o] PP PPRRT 113
PRIMAY NOGE..... ettt e bt e bt e e et e e ek et e e et et r e e e s b bt e e e anr e e e s ennneeenaneee s 200
Priority Levels
Control Channel ON NEIWOIK LEVELoiii it e e e e et e e e e e e e ennte e e e e e nnnaeeaaaean 173
Packet Data TranSTer.........u ittt e ettt e e e e e st e e e e e e e e s e nbaeteeaeeeaaebeeeaeeeaannaeeeaeeeaanne 185
[(01T 1 Vo PSPPI 50
PrOCE S SINGACK ettt ettt ettt et et et e e nnnenenennnneee 54
Properties With MUIIPIE Vari@bIES..........uuuuuiiiiiiiiii e ea e aesensaessstsssaesesesesnsenesennnnnnnnes 89
[o] 1= o PP SPPPR 25
[RTCT= o |1 o TSR 27
S T=T 1] o o IR PP ST U RSP O PP PP UUPPPPTPPPIN 26
Q
L LU PRSP 139
R
R ettt ettt ettt e e ettt e e e a—eeeeetteeeaatteeeanteeeeanteeeeaaseeeeaanneeeeanteeeeteeeeaanteeeaasteeeeantaeeeanneeeanaeenn 115
=T oo] (o RSP UURRR 90
Registry
CeNETAl REGISIIY ...ttt e ettt e bttt e e h et e e et et e e e b et e e bt e e aate e e ane e e e beeena 215
T CY =T g LT 1 (o] SR 212
LR]| P PP PP PP TOPUPPPPPPN 50
RESUITACK ...ttt oottt e e e e e et ettt e e e e e e e ta et e e e e e e e e e naeeee e eaamntbeeeeeeeeaanntneneeaeeeaannes 54
Retries
HIGh LEVEI REIMES ...ttt ettt e e e e oo ettt e e e e e e s s n b e et ee e e s nntteeeeeesaansnneeeeeeeaannes 173
LOW LEVEI RELIESeeeieee ettt ettt e e e oo oottt e e e e e e e a e s e e eeea e e e e ansseeeeeeannseeeeaaeeaannnnneeaaaeaannes 173
L (Y 1 41 PP PPRRTN 117
RING Break DIGGNOSIScceueteieiiieee ettt ettt ettt e ettt e et a4k et e s e ab et e eb e e e b et e e ab e e ane e e n 131
R .ottt ettt et e e ta e e e a——e e e et teeeeahteeeaaa——eeeaateeeeaasteeeeaateeeeataeeeataeeeaanaeeeeatbeeeaantaeeeaanneeeaanreeann 75
(2o 18]] Lol = oV |10 =Y PP PPPPTN 115
[0 T T I g To 11 I =t oo Yo 11 Vo SO 75
S
S T= = ol oV PP PPRRT 103
S T=Telo] gl E= 1 Y [To [TP URRRPS 48, 200
S ToTeTe a0 =T Y N o To [T PSP PU PR PPPR 137
1Yot 0y gL [0 - | = T PSSP P PR PP PR 186
SEEKING LOGICAI AQAIESSttt ettt e e e e ettt e e e e e e st e et eeaeeesansbasaeeaeeasssseeeeeesaasssnneeaeeesanes 174
ST=Te [aal=T 1 e=Y o] T = o o] PP 48
RS T=T o 0 0T 0 (=Y I I =T 1] = S 176
S T=Y =T (g To Lo T N5 = SRS 94
T USRS 54
S T=1 (T RS OUPRR 54
1] =T [1 PRSP 66
11U o o1V o SO OPRR 139
ST (o0 =Te [l 231 (- SRRSO 59
ST (o =T I o] o o [P P U P RSO 59
ST T0 8T To BN 7 ST E 59
ST | L= I =T g1 £ R 176
5] = 1Y R 24,110
Specification Document © Copyright 1999 - 2005 MOST Cooperation

Page 230 MOST Specification 05/2005

MOST® MOST

Specification CODPERATION
[N (o] T =TT T PRSP PPPP PP 125
SIEEP MOUE ...ttt et et h e b e h et bt e e bt e a et e et e e e e e e enne e e 203
S ToTU] (o= I - | - SRS 114
3 T T T TSP POUPPPUPRN 110
Handling By The NEtWOIK SEIVICEcciiuiiieiiiie ettt et et e et e et e e s et e e e st e e e e neeeenneeeeeaneeeeennees 178
Handling IN FUNCLON BIOCK ... ettt e e e e ettt e e e e e e s nte e e e e e e e annneeeeaeeeaannns 179
11 (=T 7= Lo YRS UUUPPRRRRN 114
SPECIfIC EXECULION EITON ...ttt e e et e eere e e e st e e et e e e ene e e e s s 47
ST USRI 207
1 £ (o] L= o Lo USRS 124, 126, 132
S o PR 50
IS = 7o O USSR 54
= T =TT SRR 50
R T ST 7 o ST 54
1= (0 T PSP PP U PRPPPPP 124
I €= LU PU R SPPRRT 123
N = {1 =T =Tt Lo USRI 124
NEtINTETACEPOWEIO ...ttt e e e e e ettt e e e e e e s e st aeteeaeeesssbeeeaaeseasnsseeaaaeaannes 124
N[04 0 aE=1[@] o 1] =1 i To] o SRS POTPPPUPRN 128
5] = (U R 54, 204
S (<] T TS PRSP PPR 57, 81
== ¢SSR 60
{11 PSP O TP E PP PP R PPPPP 60
Structure Of Data Packet
48 BYtesS Data LINK LAYEI ...ttt ettt e et e e et e e s 115
ARErNAtive Dat@ LiNK LAYEI........eeiiiiiiie ettt e et e e eb et e e e et e e e e e nr e e e nnns 116
SrUCLUrE Of MOST FTAME ...ttt e e ettt e e ettt e e s ae e e e e anb e e e emseeesmneeeeanbeeeeennneeennnees 112
SUPET VORAGE ... ittt e e et ettt e e e e e e s atb e et eeeeeeaasbaeeeeaeeesansssaeeeeeasssseaeeeesaanssnnneaeeeaanes 212
T80T Y o] =To T =TT = R 213
Supplier Specific
FBIOCKIDS ...ttt ettt ettt ettt e ab e 42kt e £ o bt e 4t eeab et ekt e ea bt e ekt e SR bt e e et e be et e e eaneeenbeeeaneeanee 40, 42
311 (¢ o PSP OUSPR 77, 80
SWItChING OFf NEIWOTK ... ettt eb e e e e e st e e e ebn e e e nanes 139
T (o] T I o PP PPURT 131
A (o gl o o= I 1= (=Y (o) U RR 210
SYNCCONNECHONTADIE ...ttt e e e e e ettt e e e e e e s st e e e e eaeeesasbssaeeaeeesssseeeeeesaansnseeeaeeesannes 191
SYNCAIONOUS ChANNEI ... e e e e et e e e e e e s et e et e e e e easansreeeeeanssaneeaeeesnnnsnnes 21,115
Synchronous Connection
Lty =1 o]] 1 T [RPN 192
=10 01 o o PSPPSR 194
SYNCArONOUS SOUICE DAta.coiiiiiiiiiiee et e et e et e e et e e e enre e e nneee 114
a1t D =Ty (o] RO PP PR PUPR 46
System Specific
FBIOCKIDS ...ttt ettt ettt h e bkt h e ae e ekt e e et e e ekt e ea et ne e e e bt e Rt e et et ean e et e enan e e s reenanee e 40
FREIDIS ettt bbb oLt b ekt h e b et e ae e bt e e bt e e n e e s b e e nan e e nereenaree e 42
T
LI USSP 177
LI 71 OO PP 188
tDiag_Master ... 132
EDIAG_SIAVE «-++exreemrermrerteertee st e e e te ettt ettt h ket E et e et eh e R e e E e e e E e e e b ekt eehe e e £ SR e e e Rt e et ea bt ket eh e Ee bt e bt ea b et e e en e et e enenenen 132
LI L O O ST O SO P OSSP OO PP PP PRPRTRRN 115
LI O O T T T T USSP P PP P P PPPTUPPPI 177, 186
LI =T o T O T PSSP U PP PPPPPOP 177, 186
Temporarily NOt AVAIIADIE EXTOT ettt e e e e ettt e e e e e e et et e e e e e s nnereeeeeeeaannnneeeeeeeann 47
L= SRR 77,83
Time DiViSiON MURIPIEXINGeeeieiie ettt ettt e s ra e e ar e e e e e e e e s b n e e e e nre e e nneee 115
THMING MASTET ...t h e ettt oot e e ekt e e ab et e e s bt e e ab bt e e e bt e e e eabe e e e ebne e e nnnee 110
THMING SIAVE ...ttt e bt ea et e o1 e bt e e ek et e e ab e e e o1t e e e aab et e e e ane e e e ebb e e e enre e e 110
BLOGK v+t e st e sttt e eat e e sttt e et e ettt et e et E e e Rt e b e R et e bt e ek e e e eh et e eRE e e ehn e een e e ea Rt e e Rt e ean e e et e eaneenrn e e nrnenneean 124, 125, 132
tMas[er ... 124
LI PSPPSR 100
B ODIPWILOW « -+ttt ettt e skttt ettt e sttt ettt e e e a4 ettt ea ettt ea bt e e e ea b e et e oAb e e 4R e e SR £ e R e e e R e e e R et e R et e R et ket R et e bt e b e e e ne e n e nanee e 205
tpwrswitchoffDe|ay .. 139, 143
TranspParent ChaNEIS ...t et s et e e s b e e e e ar e e e sne e e e s br e e e e nre e e nneee 114
Specification Document © Copyright 1999 - 2005 MOST Cooperation

MOST Specification 05/2005 Page 231

MOST® MOST

Specification CODPERATION
ERESHAI v+ e xsreeeenseeeesusseeesasseeeeassseaesasseeeeansaeeeeass e e e e esbeeeeeasaeeeennneeeeanbeeeeannneeeeennaeeeantbeeeeanteeeeaneeeareeenns 139, 140, 143, 144
tRetryShutDown .. 139
tShutDownWait ... 1 39
tS|ave .. 124, 144
LT O S TP PP TP 139
LS 128
U
L8 To1 E= T = To I =Y { T Yo PRSP SRRRRRN 79
[0 To e T | T=To I (o] o T=Ty 4RSS PPPPPRRIN 79
L0 T RSP R 57, 81
I ST 82
18]][= To B] o] (Yo i o] o PP PPRRT 210
L8010 T7 S LT 0T 5) SO 143, 145
UNSIGNEA BYLE ... ittt ettt e e bt e e et e e e e b et e e ek et e e e bt e e e e e b et e e et e e nnn e e e nnneeean 58
(8] EY (e g T=Te [o] o o RO TP PP PTP PP UOPPPPPIN 59
(81T (e [aT=Te R4] (o OSSOSO PRI 59
L] TSSOSO SUSSROT 101
\'
RV 41 (0 E= T @Z)5 T4 18T o 1= (o] o SO 63
Voltage
(07 g1 Ter=] Y o] | =T [SRS UPERP 149, 212
CritiCal VOIAGE RANGEco ittt et et e et e e eb e e e sate e e s eane e e e aabeeenan 213
HaNAIING LOW VOGO ...ttt b et e ettt e e st e e e e st e e e nneee 214
(o1 Y o] 7= 1= T PSP UPUPPP PP 149
LOW VORAGE RANGE ...ttt ettt e e e e e st e e e e e e e s eaa b e e e e e e e e e sasbaaeeeaeeesssseeaaeesenssssaeeaeeeaanses 213
Normal Operation VOIage RaANGE........c..ooiiiiiiiiii et e e e e ettt e e e e e e st a e e e s eesnraeeaeeeeannes 213
T80 =T Y o] | T = OSSR 212
T8 o T=T Y o] = To TN =TT = SOOI 213
VORAGE LOW (NELWOTK) ...ttt ettt e e ettt e st e e st e e e r e e e s e e e e sbr e e e enne e e nneee 143
w
AT 1L T PRSPPI 144
WaKiNG Of THE NEIWOTKcoiiiiiiii e e ettt e e e e e et e e e e e e e eabaaeeeeeeeseasssseeeeeassnssaeeeaeeeanssnneeaaeas 138
R ATz 1 o3 o oo TN I o =Y P UUP TR 212
L AT I T S 212
X
XIMIE REITY TIMIB .ot e ettt o bt e e a bt e e e sttt e s b e e e ab et e e e bt e e e aabb e e e ebbe e e nnees 117
Specification Document © Copyright 1999 - 2005 MOST Cooperation

Page 232 MOST Specification 05/2005

MOST® MOST

Specification COOPERATION

Notes:

Specification Document © Copyright 1999 - 2005 MOST Cooperation
MOST Specification 05/2005 Page 233

MOST® MOST

Specification COOPERATION

Notes:

Specification Document © Copyright 1999 - 2005 MOST Cooperation
Page 234 MOST Specification 05/2005

MOST® MOST

Specification COOPERATION

Notes:

Specification Document © Copyright 1999 - 2005 MOST Cooperation
MOST Specification 05/2005 Page 235

MOST® MOST

Specification COOPERATION

Specification Document © Copyright 1999 - 2005 MOST Cooperation

	Introduction
	Purpose
	Scope
	MOST Document Structure
	References
	Overview

	Application Section
	Overview of Data Channels
	Control Channel
	Synchronous Channel
	Asynchronous Channel
	Managing Synch./Async. Bandwidth

	Logical Device Model
	Function Block
	Slave, Controller, HMI
	First Introduction to MOST Functions

	Functions
	Methods
	Properties
	Setting a Property
	Reading a Property

	Events
	Function Interfaces
	Definition Example
	MOST Network Service
	Delegation, Heredity, Device Hierarchy
	Delegation
	Heredity of Functions
	Deriving Devices / Device Hierarchy

	Protocols
	Protocol Basics
	Structure of MOST Protocols
	DeviceID
	FBlockID
	InstID
	Responsibility
	Assigning InstID
	InstID of NetBlock
	InstID of NetworkMaster
	InstID of Function Block EnhancedTestability
	InstID Wildcards

	FktID
	OPType
	Error
	Start, Error
	StartResult, Result, Processing, Error
	StartAck, StartResultAck, ProcessingAck, ResultAck, ErrorAck
	Get, Status, Error
	Set, Status, Error
	SetGet, Status, Error
	GetInterface, Interface, Error
	Increment and Decrement, Status, Error
	Abort, Error
	AbortAck, ErrorAck

	Length
	Data and Basic Data Types
	Boolean
	BitField
	Enum
	Unsigned Byte
	Signed Byte
	Unsigned Word
	Signed Word
	Unsigned Long
	Signed Long
	String
	Stream
	Classified Stream
	Short Stream

	Function Formats in Documentation
	Protocol Catalogs
	Application Functions on MOST Network (Introduction)
	Controller / Slave Communication
	Communication with Properties Using Shadows
	Communication with Methods
	Standard Case
	Special Case Using Routing

	Seeking Communication Partner
	Requesting Function Block Information from a Device
	Requesting Functions from a Function Block
	Transmitting the Function Interface
	Principle
	Realization of the Ability to Extract the Function Interface

	Function Classes
	Properties with a Single Parameter
	Function Class Switch
	Function Class Number
	Function Class Text
	Function Class Enumeration
	Function Class BoolField
	Function Class BitSet
	Function Class Container

	Properties with Multiple Parameters
	Function Class Record
	Function Class Array
	Function Class Dynamic Array
	Function Class LongArray
	MotherArray
	ArrayWindow
	Positioning an ArrayWindow on a MotherArray
	Re-Synchronization of ArrayWindows

	Function Class Sequence Property

	Function Classes for Methods
	Function Class Trigger Method
	Function Class Sequence Method

	Handling Message Notification

	Network Section
	MOST Network Interface Controller and its Internal Services
	Bypass
	Source Data Bypass
	Master/Slave, Active and Passive Components
	Data Transport
	Blocks
	Frames
	Preamble
	Boundary Descriptor
	MOST System Control Bits

	Source Data
	Definition of Control Data and Source Data
	Differentiating Synchronous and Asynchronous Data
	Source Data Interface
	Transparent Channels
	Synchronous Area
	Asynchronous (Packet Data) Area

	Control Data
	Control Data Interface
	Description

	Internal Services
	Addressing
	Support at System Startup
	Delay Recognition
	Automatic Channel Allocation
	Detection of Unused Channels

	Dynamic Behavior of a Device
	Overview
	NetInterface
	NetInterfacePowerOff
	NetInterfaceInit
	NetInterfaceNormalOperation
	NetInterface Ring Break Diagnosis

	Secondary Nodes
	Power Management
	Waking of the Network
	Network Shutdown
	Device Shutdown
	Performing Device Shutdown
	Waking from Device Shutdown
	Persistence of Device Shutdown
	Response when Device Shutdown is unsupported

	Error Management
	Handling of Light Off
	Fatal Error
	Waking
	Operation

	Unlock
	Network Change Event
	Failure of a Function Block
	“Hanging” of an Application
	Failure of a Network Slave Device
	Low Voltage

	Over-Temperature Management
	Introduction
	Levels of Temperature Alert
	Re-Start Behavior

	Network Management
	General Description of Network Management
	System Startup
	Initialization of the Network
	Initialization on Application Level

	General Operation
	Finding communication partners
	Network Monitoring
	Dynamic Function Block Registrations

	System States
	System State NotOK
	System State OK

	Network Master
	Setting the System State
	Setting the System State to OK
	Setting the System State to NotOK (Network Reset)

	Central Registry
	Purpose
	Contents
	Persistence of the Central Registry
	Responsibility
	Responding to Requests for Information from the Central Registry
	Secondary Nodes

	Specific Behavior During System Startup
	Valid Logical Node Address Not Available
	Valid Logical Node Address Available but No Central Registry
	Valid Logical Node Address and a Central Registry Available
	Stable Network

	Scanning the System (System Scan)
	Configuration Request Description
	Addressing
	Non Responding Network Slaves
	Retries of Non Responding Network Slaves
	Network Slave Continuous cause for System State NotOK
	Duration of System Scanning
	Reporting the Results of a System Scan without Errors

	Invalid Registration Descriptions
	Un-initialized Logical Node Address
	Invalid Logical Node Address
	Duplicate Logical Node Addresses
	Duplicate InstID Registrations
	Error Response

	Updates to the Central Registry
	Disappearing Function Blocks in System State OK
	Appearing Function Blocks in System State OK
	System scan without any change in Central Registry
	Large Updates to the Central Registry in System State OK
	Non-responding Devices in System State OK

	Miscellaneous Network Master Requirements
	Network Change Event (NCE)
	Positioning of the Function Block NetworkMaster in the MOST Network

	Verifying the Central Registry at System Startup (Verification Scan)
	Missing Devices
	Requesting Missing Devices
	Matching Response of Missing Device
	Non-matching Response of Missing Device
	Receiving a Central Registry Request for a Missing Function Block

	Network Slave
	Decentral Registry
	Building a Decentral Registry
	Updating the Decentral Registry
	Deleting the Decentral Registry
	Persistence of the Decentral Registry

	Specific Startup Behavior
	Behavior When a Valid Logical Node Address is Not Available at System Startup
	Behavior When a Valid Logical Node Address is Available at System Startup
	Deriving the Logical Node Address of the Network Master

	Normal Operation of the Network Slave
	Behavior in System State OK
	Behavior in System State NotOK
	Responding to Configuration Requests by the Network Master
	Reporting Configuration Changes to the Network Master
	Failure of a Function Block in a Network Slave
	Failure of a Network Slave Device
	Unknown System State
	Determining the System State
	Finding Communication Partners
	Reaction to Configuration.Status(OK) When in System State NotOK
	Reaction to Configuration.Status(OK) When in System State OK
	Reaction to Configuration.Status(NotOK) when in System State NotOK
	Reaction to Configuration.Status(NotOK) When in System State OK
	Reaction to Configuration.Status(New)
	Reaction to Configuration.Status(Invalid)

	Accessing Control Channel
	Addressing
	Assigning Priority Levels
	Low Level Retries
	High Level Retries
	Basics for Automatic Adding of Physical Address
	Handling Overload in a Message Sink
	MOST Message Services
	Control Message Service
	Application Message Service (AMS) and Application Protocols

	Handling Synchronous Data
	MOST Network Service API
	Function Block Functions
	NetBlock
	General Source / Sink Information
	Synchronous Source
	Synchronous Sink
	Handling of Double Commands

	Compensating Network Delay

	Handling Asynchronous (Packet) Data
	Direct Access to the MOST Network Interface Controller
	Priorities

	MOST Network Service
	Securing Data

	MOST Asynchronous Medium Access Control (MAMAC)

	Controlling Synchronous / Asynchronous Bandwidth
	Connections
	Synchronous Connections
	ConnectionMaster
	Establishing Synchronous Connections
	Removing Synchronous Connections
	Supervising Synchronous Connections
	Enabling Synchronous Output
	Source Drops

	Timing Definitions
	Secondary Node
	Scenario 1
	Scenario 2
	Scenario 3

	Hardware Section
	Basic HW Concept
	Optical Interface Area
	Overview
	Connection Systems (Pig Tail)

	MOST Function Area
	µC Area
	Application Area
	Power Supply Area
	Voltage Levels

	Appendix A: Network Initialization
	Network Master Section
	System Startup when a Central Registry is Available
	Flow of System Initialization Process by the Network Master

	Network Slave Section

	Appendix B: Synchronous Data Types
	Appendix C: List of Figures
	Appendix D: List of Tables
	INDEX

