

2009

## **Worldwide Emissions Standards**

## Heavy Duty & Off-Road Vehicles



Innovation for the Real World



With over thirty years in the business, Delphi has a long history of working with commercial vehicle and off-highway vehicle customers. We have the engine management system capabilities that are leading the way into the future. The pressure is going nowhere but up to meet industry demands for increased performance, efficiency, reliability and reduce emissions.

## Take a look at Delphi's commercial vehicle and off-highway Engine Management Systems portfolio and you will realize that you can count on Delphi to help you meet these demands.

## **Related Product Information:**

Gasoline Engine Management Systems - www.delphi.com/manufacturers/auto/powertrain/gas/ Diesel Engine Management Systems - www.delphi.com/manufacturers/auto/powertrain/diesel/ Evaporative Emissions Systems - www.delphi.com/manufacturers/auto/powertrain/evaporative/ Fuel Handling Systems - www.delphi.com/manufacturers/auto/powertrain/fuelhandling/ Transmission Management Systems - www.delphi.com/manufacturers/auto/powertrain/transmission/ Commercial Vehicle Powertrain Systems - www.delphi.com/manufacturers/cv/powertrain/



## DELPHI

Innovation for the Real World

## **Table of Contents**

| Table of Contents                      | 1     | Evaporative Emission Standards           | 29    | NRMM                                     | 55-79       |
|----------------------------------------|-------|------------------------------------------|-------|------------------------------------------|-------------|
| HEAVY DUTY                             | 5-54  | Japan                                    |       | EU                                       |             |
| Exhaust Emissions Standards            |       | Initial Standards                        | 30    | Compression Ignition Engines             | 55-57       |
| ECE                                    |       | Japan 2005 Standards                     | 31-32 | Agricultural and Forestry Tractors       | 57-59       |
| R49 / R24                              | 2-3   | Future Emission Standards                | 32    | Spark Ignition Engines                   | 60-61       |
| WWHD                                   | 4-6   | Test Cycles                              | 33-35 | NRMM amendment proposal                  | 61          |
| EU                                     | 40    | Requirements in other Areas of the World | 36-39 | US EPA                                   | 60.66       |
| European Vehicle Categories            | 7     | Additional Emissions related Requireme   | ents  | Off-Road Compression Ignition Engines    | 62-66       |
| EU I/EU II                             | . 7   | Onboard Diagnostics                      |       | Off-Road Spark Ignition Engines          | 67-69<br>70 |
| EU III/EU IV                           | 8-9   | EU OBD                                   | 40-41 | Recreational Vehicle Engines<br>CARB     | 70          |
| EUV                                    | 10    | US EPA OBD II / CARB II                  | 42-43 | Diesel Compression Ignition Engines      | 71          |
| EU VI proposal                         | 11-13 | WWH-OBD                                  | 43-44 | Small Off-Road Engines                   | 71-72       |
| Durability of emission control systems | 14    | EU Production Conformity Testing         | 45-46 | Large Off-Road Engines                   | 73          |
| Test Cycles                            | 15-17 | US In-Use Testing                        | 47-48 | Off-Highway Recreational Equipment       | 74          |
| US Federal (EPA)                       |       | Fuels                                    |       | Japan                                    | 74          |
| Vehicle Classification                 | 18    | EU Fuel Quality                          | 49-51 | Diesel powered Vehicles                  | 75          |
| Diesel Engines                         | 18-20 | US Fuel Quality                          | 52-54 | Small Utility Gasoline Engines           | 75          |
| Otto-Cycle Engines                     | 20-21 | Japan Fuel Quality                       | 54    | Requirements in other Areas of the World | 76          |
| California (CARB)                      |       |                                          |       | Test cycles                              | 77-79       |
| Emissions Standards                    | 22-25 |                                          |       | Classer                                  | 80          |
| US Useful Life Standards               | 25    |                                          |       | Glossary                                 | 80          |
| Test Cycles                            | 26-27 |                                          |       |                                          |             |
| Supplemental test cycles               | 27-29 |                                          |       |                                          |             |

## ECE

ECE regulations are similar to EU directives. A base regulation is updated in a consecutive series of amendments. Dates of implementation differ from country, depending on the approval status of the respective amendment in that country.

| ECE - R49/00-02 | (applied to C.I. | engines only) |
|-----------------|------------------|---------------|
|-----------------|------------------|---------------|

| TEST     | UNIT    | со   |                   | HC  |                   | NOx  |                   | PM   |                    |
|----------|---------|------|-------------------|-----|-------------------|------|-------------------|------|--------------------|
|          |         | TA   | COP               | TA  | COP               | TA   | COP               | TA   | COP                |
| R49      | g/kWh   | 14   | -                 | 3.5 | -                 | 18   | -                 | -    | -                  |
| R49-1    | g/kWh   | 11.2 | 12.3              | 2.4 | 2.6               | 14.4 | 15.8              | -    | -                  |
| R49-2: 2 | stages  |      |                   |     |                   |      |                   |      |                    |
| Stage I  | g/kWh   | 4.5  | 4.9               | 1.1 | 1.23              | 8.0  | 9.0               | 0.36 | 0.40               |
| Stage II | g/Kvvii | 4.0  | 4.0 <sup>1)</sup> | 1.1 | 1.1 <sup>1)</sup> | 7.0  | 7.0 <sup>1)</sup> | 0.15 | 0.15 <sup>1)</sup> |

Stage I: applicable from 01 Jul. 92

Stage II: applicable from 01 Oct. 95

<sup>1)</sup> Stage II COP limits apply from 01 Oct. 96

## ECE – R49/03 content equivalent to 88/77/EEC, amended by 99/96/EC, (EURO III and IV standards)

= approval of C.I. and NG and of P.I. fuelled with LPG engines

= application for approval of a vehicle by its approved engine or engine family

## Test cycles (See pages 16 -17) Diesel Euro III: ESC/ELR. ETC can be requested. Euro IV: ESC, ELR and ETC.

Gas engines, ETC test.

#### Implementation dates:

Euro III: 2000; Euro IV: 01 Oct. 05

#### ECE – R49/04 – Amendment 01-05 (equivalent to Dir 2005/55/EC and Dir 2005/78/EC)

= certification of gas engines with new testing validity criteria to cover their different dynamic response to that of diesel engines.

Test cycle: Euro V: ESC, ELR and ETC

Implementation dates: Euro V: 01 Oct 08 Emission limits: see page 10

WHDC GTR n°4 has been adopted as annex 10 to ECE Reg 49 (see p. 4)

WWH-OBD GTR n°5 has been adopted as annex 11 to ECE Reg 49 (see p. 43)

**Proposed amendment:** PMP (Particle Measurement Program) Discussion document: Particle count should be determined by integration and particle emissions expressed as Number/kWh.



#### ECE - R24/03

This Reg applies to the emission of visible exhaust pollutants from C.I. engines fitted to road vehicles.

Two tests are required:

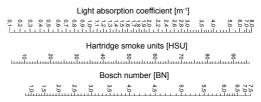
#### - Speed Stabilized under full load

6 measurements shall be made at engine speeds spaced out uniformly between that corresponding to maximum power and the higher of the following two engine speeds: 45% of the engine speed corresponding to maximum power; and 1000 rpm. For each measuring point, the smoke measured should not exceed the limit values (SL) specified in the directive, which are a function of the air flow rate. The value selected will be the measured (SM) nearest the relevant limit value.

#### - Free acceleration:

With warm engine from idle to maximum speed giving an average (XM) of 4 consecutive non-dispersed values.

Calculated according both tests:


XL1 = (SL/SM)\*XM and XL2 = XM + 0.5

The lowest numerical XL value will be marked on the vehicle and will be used as a reference for checking production which should not be greater than this value more than  $0.5\ m^{-1}$ .

Additional requirement for turbo engines:

XM ≤ SL (corresponding to max SM) + 0.5 m<sup>-1</sup>

#### - Conversion of Diesel Smoke values





#### Worldwide Harmonised Heavy Duty Emissions Certification Procedure

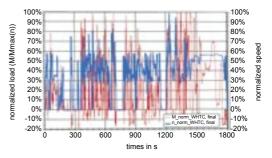
Establishment of a harmonised Global Technical Regulation (GTR) covering the TA procedure for HD engine exhaust emissions, adopted on Nov 15, 2006

<u>Application:</u> C.I. engines and P.I. engines fuelled w/ NG and LPG, design speed > 25 km/h and max mass > 3,5 tons.

Two representative test cycles have been created covering typical driving conditions in the European Union, the USA, Japan and Australia:

one transient test cycle (WHTC)

- one steady state test cycle (WHSC)

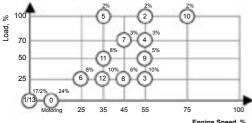

The GTR does not contain emission limit values

Exhaust Emissions to be measured: CO, HC, NMHC, NOx, PM,  $\rm CO_2,$  expressed in g/kWh.

If GTR applied in a national legislation, the limit values should represent at least the same level of severity as its existing regulations.

#### WHTC

It is a second by second sequence of normalized speed and torque values.



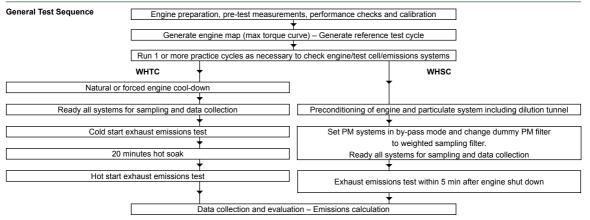

### WHSC

It consists of a number of speed and power modes which cover the typical operating range of HD.

The weighting factors (WF) are given for reference only.

Idle mode is separated in 2 modes, mode 1 at the beginning and mode 13 at the end of the test cycle.




Engine Speed, %

| Mode | Speed [%] | Load | <b>WF</b> <sup>1)</sup> | Mode length [s] Incl. 20 s ramp |
|------|-----------|------|-------------------------|---------------------------------|
| 0    | Motoring  | -    | 24%                     | -                               |
| 1    | 0         | 0    | 17%/2                   | 210                             |
| 2    | 55        | 100  | 2%                      | 50                              |
| 3    | 55        | 25   | 10%                     | 250                             |
| 4    | 55        | 70   | 3%                      | 75                              |
| 5    | 35        | 100  | 2%                      | 50                              |
| 6    | 25        | 25   | 8%                      | 200                             |
| 7    | 45        | 70   | 3%                      | 75                              |
| 8    | 45        | 25   | 6%                      | 150                             |
| 9    | 55        | 50   | 5%                      | 125                             |
| 10   | 75        | 100  | 2%                      | 50                              |
| 11   | 35        | 50   | 8%                      | 200                             |
| 12   | 35        | 25   | 10%                     | 250                             |
| 13   | 0         | 0    | 17%/2                   | 210                             |
| Sum  |           |      | 100%                    | 1895                            |

1) WF = Weighting Factor

## Heavy Duty

### ECE - WWHD



Heavy Duty

#### VEHICLE CATEGORIES Dir 70/156/EEC as amended by Dir 2001/116/EEC

GVW = Gross Vehicle Weight

| Category | Description                                      | Sub-<br>category    | Number<br>of Persons | Mass Limi                    | t                           |  |
|----------|--------------------------------------------------|---------------------|----------------------|------------------------------|-----------------------------|--|
| М        | Transportation<br>of Passengers<br>Min. 4 wheels | M1                  | Up to<br>9 Persons   | GVW ≤ 3,500 kg <sup>1)</sup> |                             |  |
|          |                                                  | M2                  | Over<br>9 Persons    | GVW ≤ 5,000 kg               |                             |  |
|          |                                                  | M3                  |                      | GVW > 5,000 kg               |                             |  |
| N        |                                                  | N <sub>1</sub> Cl 1 |                      |                              | RM ≤ 1,305 kg               |  |
|          | Transportation                                   | N <sub>1</sub> Cl 2 |                      | Max GVW<br>≤ 3,500 kg        | 1 1 700 1                   |  |
|          | of Goods<br>Min. 4 wheels                        | N <sub>1</sub> CI 3 | N.A.                 |                              | 1,760 kg < RM<br>≤ 3,500 kg |  |
|          |                                                  | N <sub>2</sub>      |                      | 3,500 kg <                   | GVW ≤ 12,000 kg             |  |
|          |                                                  | N <sub>3</sub>      |                      | 12,000 kg < GVW              |                             |  |

<sup>1)</sup> Until EU4: Two subgroups: M1 with GVW ≤ 2,500 kg and M1 with 2500 kg < GVW ≤ 3,500 kg

#### EURO I - Dir 88/77/EEC amended by Dir 91/542/EEC

Exhaust emissions of compression ignition engines for vehicles > 25 km/h

| Test   | Emissions             | Unit    | Engine Power (kW)    |                      |  |
|--------|-----------------------|---------|----------------------|----------------------|--|
| Cycle  | TA (1992) – FR (1993) | Onit    | P ≤ 85 <sup>1)</sup> | P > 85 <sup>1)</sup> |  |
|        | CO                    |         | 4.5 (4.9)            | 4.5 (4.9)            |  |
| ECE 49 | HC                    | ~//J//b | 1.1 (1.23)           | 1.1 (1.23)           |  |
| ECE 49 | NOx                   | g/kWh   | 8.0 (9.0)            | 8.0 (9.0)            |  |
|        | PM                    |         | 0.612 (0.68)         | 0.36 (0.40)          |  |

<sup>1)</sup> In brackets: COP values

#### EURO II - Dir 88/77/EEC as amended by Dir 91/542/EEC and Dir 96/1/EEC

| Test<br>Cycle | Emissions | Unit    | EURO II - TA – FR <sup>2)</sup><br>01 Oct. 95 – 01 Oct. 96 |
|---------------|-----------|---------|------------------------------------------------------------|
|               | CO        |         | 4.0                                                        |
| ECE           | HC        | g/kWh   | 1.1                                                        |
| R49-02        | NOx       | g/KvvII | 7.0                                                        |
|               | PM        |         | 0.15 <sup>1)</sup>                                         |

1) 0.25 g/kWh for engines with a cylinder swept volume < 0.7 liters and rated power

speed > 3000 rpm and engine power < 85kW until 30 Sep 97 for TA and 30 Sep 98 for FR  $^{2)}$  COP Limits = TA limits



#### Euro III - Dir 88/77/EC as amended by Dir 1999/96/EC and Dir 2001/27/EC

- Diesel engines are tested on ESC and ELR cycles (see pages 16-17). NOx can be tested on ETC cycle (6.5 g/kWh) if required by TA authority
- Diesel engines fitted with aftertreatment devices (PM filters, De-NOx) are tested on ESC, ELR and ETC cycles.
- Gas engines are tested only on ETC cycle
- EEV = "Enhanced Environmentally Friendly Vehicle"
  - Type of vehicle propelled by an engine complying with the permissive emission target values shown in the EEV columns
- Specific requirements for diesel from EURO III
- NOx measured at the random check points within the control area of the ESC test must not exceed by more than 10% the values interpolated from the adjacent test modes.
- Smoke on the random test speed of ELR must not exceed the highest smoke value of the 2 adjacent test speeds by more than 20% or by more than 5% of the limit value
- Defeat devices and irrational emission control strategies are prohibited from EURO III

#### Limit values – EURO III

| Emissions   |                 | Eur         | o III           | Euro II     | I - EEV            |
|-------------|-----------------|-------------|-----------------|-------------|--------------------|
| TA: 10/2000 | A: 10/2000 Unit |             | ETC             | ESC/ELR     | ETC                |
| FR: 10/2001 |                 | Diesel only | Diesel / Gas    | Diesel only | Diesel / Gas       |
| со          |                 | 2.1         | 5.45            | 1.5         | 3.0                |
| HC          |                 | 0.66        | -               | 0.25        | -                  |
| NMHC        | g/kWh           | -           | 0.78            | -           | 0.40               |
| CH4 2)      | 9/6///          | -           | 1.6             | -           | 0.65               |
| NOx         |                 | 5.0         | 5.0             | 2.0         | 2.0                |
| PM          |                 | 0.1/0.131)  | 0.16/0.21 1) 3) | 0.02        | 0.02 <sup>3)</sup> |
| Smoke       | m⁻¹             | 0.8         | -               | 0.15        | -                  |

<sup>1)</sup> For engines having a swept volume of less than 0.75 dm<sup>3</sup> per cylinder and a rated power speed of more than 3000 min<sup>-1</sup>

DELPH

8

<sup>2)</sup> For natural gas engines only

3) Not applicable for gas engines - EURO III stage



# EURO IV - Dir 88/77/EC as amended by Dir 1999/96/EC, Dir 2005/55/EC Dir 2005/78/EC and Dir 2006/51/EC

- Diesel engines are tested on ESC, ELR and ETC cycles if required - Gas engine are tested on ETC cycle

| Emissions                  |         | EURO IV                |                     | EURO IV - EEV          |                     |
|----------------------------|---------|------------------------|---------------------|------------------------|---------------------|
| TA: Oct. 05<br>FR: Oct. 06 | Unit    | ESC/ELR<br>Diesel only | ETC<br>Diesel & Gas | ESC/ELR<br>Diesel only | ETC<br>Diesel & Gas |
| со                         |         | 1.5                    | 4.0                 | 1.5                    | 3.0                 |
| HC                         |         | 0.46                   | -                   | 0.25                   | -                   |
| NMHC                       | g/kWh   | -                      | 0.55                | -                      | 0.40                |
| CH4 1)                     | 9/10/11 | -                      | 1.1                 | -                      | 0.65                |
| NOx                        |         | 3.5                    | 3.5                 | 2.0                    | 2.0                 |
| PM                         |         | 0.02                   | 0.032)              | 0.02                   | 0.02 2)             |
| Smoke                      | m-1     | 0.5                    | -                   | 0.15                   | -                   |

<sup>1)</sup> For natural gas engines only

<sup>2)</sup> Not applicable for gas fuelled engines – EURO IV stage

#### NOx screening - "Cycle beating"

- Cycle beating appeared from EURO III due to the use of smart electronics: Injection timing advance during transient operation (fuel consumption reduction) Retarded timings retaining during steady states (NOx reduction).
- Dir 2001/27/EC, amendment to Dir 88/77/EEC: prescriptions to prevent the use of defeat devices and/or irrational emissions control strategies.
   A NOx screening on the ETC cycle may be required by TA authority.
   ETC NOx level must not exceed ESC standards by more than 10%.
- Dir 2001/27/EC allows manufacturers to provide TA authority with the results of a NOx screening in addition to a written statement that neither defeat device nor irrational control strategy is used.
- Proposal: NOx emissions from the ETC test must not exceed the ESC standards under any operating conditions.

DELPH

9



Euro V – (Dir 88/77/EC as amended by Dir 2001/27/EC) Replaced by Dir 2005/55/EC and Dir 2005/78/EC amended by Dir 2006/51/EC and Dir 2008/74/EC

For TA and for EEV's, the emissions have to be determined on the ETC and the ESC / ELR tests.

| Emissions                             |                 | Euro V                 |                     | Euro V - EEV           |                     |
|---------------------------------------|-----------------|------------------------|---------------------|------------------------|---------------------|
| TA: 01 Oct. 08<br>-<br>FR: 01 Oct. 09 | Unit            | ESC/ELR<br>Diesel Only | ETC<br>Diesel & gas | ESC/ELR<br>Diesel Only | ETC<br>Diesel & gas |
| СО                                    |                 | 1.5                    | 4.0                 | 1.5                    | 3.0                 |
| HC                                    |                 | 0.46                   | -                   | 0.25                   | -                   |
| NMHC                                  | g/kwh           | -                      | 0.55                | -                      | 0.40                |
| CH4 1)                                | 9/10/11         | -                      | 1.1                 | -                      | 0.65                |
| NOx                                   |                 | 2.0                    | 2.0                 | 2.0                    | 2.0                 |
| PM                                    |                 | 0.02                   | 0.032)              | 0.02                   | 0.02 2)             |
| Smoke                                 | m <sup>-1</sup> | 0.5                    | -                   | 0.15                   | -                   |

1) For natural gas engines only

<sup>2)</sup> Not applicable for gas fuelled engines for EURO V stage

Dir 2008/74/EC reflects the change of vehicle scope due to the Euro 5 & 6 regulations for passenger cars and light duty trucks. It includes test procedures for HD and vehicles with gasoline engines. It applies to vehicles with a reference mass > 2.610 kg.





#### Euro VI regulation proposal: Split level approach:

- Co-decision regulation: adoption process on going proposal adopted by EU Parliament on 16 Dec 08 includes general provisions
- Comitology regulation: draft laid down in February 2009 includes technical requirements to be adopted by 01 Apr 2010
- Scope:  $M_1$ ,  $M_2$ ,  $N_1$  and  $N_2$  with a RM > 2.610 kg

#### All M<sub>3</sub>, N<sub>3</sub>

#### Application dates:

TA: 31 Dec 2012 FR: 31 Dec 2013

#### Durability - Conformity of in-service vehicles or engines

- 160.000 km or 5 years
  - M<sub>1</sub>, N<sub>1</sub> and M<sub>2</sub>
- 300.000 km or 6 years
  - $N_2$ ,  $N_3$  with max technically permissible mass  $\leq$  16 tons
  - $\dot{M_{3}}$ , Class I, II and Class A, Class B with max technically permissible mass  $\leq$  7.5 tons
- 700.000 km or 7 years
  - $N_3$  with max technically permissible mass > 16 tons
  - M<sub>3</sub> Class III and Class B with max technically permissible mass > 7.5 tons

#### Procedures provisions to be defined in comitology regulation for:

- Test cycles, off cycle emissions, PN, emissions at idling speed, smoke opacity
- If appropriate, introduction of NO2 emission limit
- Correct functioning and regeneration of pollution control devices
- Crankcase emissions
- OBD systems and in-service performance of pollution control devices
- Durability
- PEMS to verify in-use emissions
- CO<sub>2</sub> and fuel consumption
- Measurement of engine power
- Reference fuels
- Specific provisions to ensure correct operation of NO<sub>x</sub> control measures
- Harmonization of national legislations on retrofitting

Unrestricted and standardized access to OBD and vehicle repair and maintenance information to independent operators

#### Financial incentives will be allowed until 31 Dec 2013 for:

- introduction of new vehicle in advance of Euro VI
- retrofitting of vehicles to Euro VI emission limit values
- scrapping vehicles which do not comply with Euro VI

#### PMP program:

PN emission limit and test procedure will be defined after completion of PMP UNECE program





#### Euro VI proposed emission limits

|                    | CO<br>(mg/kWh) | THC<br>(mg/kWh) | NMHC<br>(mg/kWh) | CH₄<br>(mg/kWh) | NO <sub>x</sub> <sup>3)</sup><br>(mg/kWh) | NH <sub>3</sub><br>(ppm) | PM mass<br>(mg/kWh) | PN number <sup>2)</sup><br>(#/kWh) |
|--------------------|----------------|-----------------|------------------|-----------------|-------------------------------------------|--------------------------|---------------------|------------------------------------|
| ESC (CI)           | 1500           | 130             | -                | -               | 400                                       | 10                       | 10                  |                                    |
| ETC (CI)           | 4000           | 160             | -                | -               | 400                                       | 10                       | 10                  |                                    |
| ETC (SI)           | 4000           | -               | 160              | 500             | 400                                       | 10                       | 10                  |                                    |
| WHSC <sup>1)</sup> |                |                 |                  |                 |                                           |                          |                     |                                    |
| WHTC <sup>1)</sup> |                |                 |                  |                 |                                           |                          |                     |                                    |

<sup>1)</sup>Limit values to be established at a later stage, when correlation factors to current ESC and ETC are established

Proposed correlation factors (TNO report - 01 Dec 2008)

|             | NOx  | CO   | HC   | PM   |
|-------------|------|------|------|------|
| WHTC Vs ETC | 1.10 | 1.00 | 1.00 | 1.00 |
| WHSC Vs ESC | 1.00 | 1.00 | 1.00 | 1.00 |

<sup>2)</sup> To be defined at a later stage <sup>3)</sup> Admissible NO<sub>2</sub> in the NO<sub>2</sub> limit value may be defined at a later stage

#### Subjects to further review:

- Tests, procedures, requirements and tests cycles in order to reflect real driving conditions
- If need new pollutants to regulate

## Heavy Duty





## More responsive...More responsible

Delphi designs, manufactures and delivers complete engine management systems (EMS), including injection units and electronics. These systems help deliver immediate responsiveness for operators, increased fuel economy for reduced operating costs and lower emissions for a greener environment.

Delphi's revolutionary family of injectors and pumps precisely shapes injection events to enable fuel economy, increased performance and substantially reduced emissions.

Plus their common-package approach helps prevent the need for engine redesigns.

Visit www.delphi.com/manufacturers/cv/powertrain/



Innovation for the Real World



#### Durability of emission control systems

Vehicles and engines have to confirm the correct operation of the emission control devices during the normal life of the vehicle or engine

- from 01 October 2005 for new type approvals
- from 01 October 2006 for all type approvals

| Vehicle Category                 | Useful Life           |  |  |
|----------------------------------|-----------------------|--|--|
| N1 – M2                          | 100,000 km or 5 years |  |  |
| N2, N3 ≤ 16 tons – M3 ≤ 7.5 tons | 200,000 km or 6 years |  |  |
| N3 > 16 tons – M3 > 7.5 tons     | 500,000 km or 7 years |  |  |

#### **Deterioration factors**

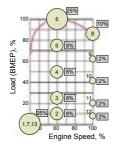
Manufacturers can choose to apply DF's foreseen into the directive or the DF's developed over a specific service accumulation schedule

#### 1) DF's based on service accumulation schedule

DF's are developed from the selected engines based on a distance and service accumulation procedures that includes periodic testing for gaseous and PM emissions over the ESC and ETC tests.

| Vehicle Category                  | Minimum service accumulation period |
|-----------------------------------|-------------------------------------|
| N1                                | 100,000 km                          |
| N2                                | 125,000 km                          |
| N3 w/ permissible mass ≤ 16 tons  | 125,000 km                          |
| N3 w/ permissible mass > 16 tons  | 167,000 km                          |
| M2                                | 100,000 km                          |
| M3 w/ permissible mass ≤ 7.5 tons | 125,000 km                          |
| M3 w/ permissible mass > 7.5 tons | 167,000 km                          |

#### 2) Alternative: DF's defined into the Directive 2005/78/EC


| Engine type | Test cycle | со  | HC   | NMHC | CH4 | NOx  | PM  |
|-------------|------------|-----|------|------|-----|------|-----|
| Diesel      | ESC        | 1.1 | 1.05 | -    | -   | 1.05 | 1.1 |
|             | ETC        | 1.1 | 1.05 | -    | -   | 1.05 | 1.1 |
| Gas         | ETC        | 1.1 | 1.05 | 1.05 | 1.2 | 1.05 | -   |



#### Test cycle EURO I and II / ECE R-49 or 13 Mode Cycle

It is a steady-state diesel engine test cycle used for TA emission testing of HD highway engines up to Euro II standards. Effective October 2000, the R49 cycle was replaced by the ESC cycle.

This cycle is operated through a sequence of 13 speed and load conditions. The final result is a weighted average of the 13 modes.



| Mode # | Speed             | Load, % | Weighting Factors |
|--------|-------------------|---------|-------------------|
| 1      | Idle              | -       | 0.25/3            |
| 2      |                   | 10      | 0.08              |
| 3      |                   | 25      | 0.08              |
| 4      | Max Torque Speed  | 50      | 0.08              |
| 5      |                   | 75      | 0.08              |
| 6      |                   | 100     | 0.25              |
| 7      | Idle              | -       | 0.25/3            |
| 8      |                   | 100     | 0.10              |
| 9      |                   | 75      | 0.02              |
| 10     | Rated Power Speed | 50      | 0.02              |
| 11     | ]                 | 25      | 0.02              |
| 12     |                   | 10      | 0.02              |
| 13     | Idle              | -       | 0.25/3            |





#### Test cycles Euro III and later:

defined by Dir 88/77/EC as amended by Dir 2001/27/EC Three cycles are accepted:

#### 1) ESC cycle (European Steady-State Cycle)

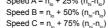
The test cycle consists of a number of speed and power modes which cover typical operating range of diesel engines.

%

-oad,

It is so determined by 13 steady and 3 random modes.

Emission values are obtained with the weighted mean of emissions on each of the 13 modes.


The three random points are randomtested in a control area.

In this random-test, only NOx emissions are measured. They must not exceed the interpolated value of the 4 nearest modes plus 10%.

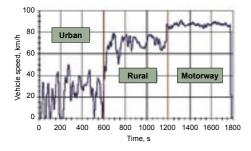
This NOx control check ensures the effectiveness of the emission control of the engine within the typical engine operation range.

8% 9% 100 75 Additional mode determined by certification 5% personnel 50 5% 10% 25 15% 0 75 50 100 Engine speed, % Idle

| Low idle | 0                                              | 15                                                                                                                                                                                                                                                                                                 | 4 minutes                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|----------|------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Α        | 100                                            | 8                                                                                                                                                                                                                                                                                                  | 2 minutes                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| В        | 50                                             | 10                                                                                                                                                                                                                                                                                                 | 2 minutes                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| В        | 75                                             | 10                                                                                                                                                                                                                                                                                                 | 2 minutes                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| А        | 50                                             | 5                                                                                                                                                                                                                                                                                                  | 2 minutes                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| А        | 75                                             | 5                                                                                                                                                                                                                                                                                                  | 2 minutes                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| А        | 25                                             | 5                                                                                                                                                                                                                                                                                                  | 2 minutes                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| В        | 100                                            | 9                                                                                                                                                                                                                                                                                                  | 2 minutes                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| В        | 25                                             | 10                                                                                                                                                                                                                                                                                                 | 2 minutes                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| С        | 100                                            | 8                                                                                                                                                                                                                                                                                                  | 2 minutes                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| С        | 25                                             | 5                                                                                                                                                                                                                                                                                                  | 2 minutes                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| С        | 75                                             | 5                                                                                                                                                                                                                                                                                                  | 2 minutes                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| С        | 50                                             | 5                                                                                                                                                                                                                                                                                                  | 2 minutes                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|          | B<br>B<br>A<br>A<br>B<br>B<br>C<br>C<br>C<br>C | B         50           B         75           A         50           A         75           A         25           B         100           B         25           C         100           C         25           C         75           C         75           C         75           C         50 | B         50         10           B         75         10           A         50         5           A         75         5           A         25         5           B         100         9           B         25         10           C         100         8           C         25         5           C         75         5           C         5         5           C         5         5           C         5         5           C         5         5 |



n. = 50% of the declared maximum net power

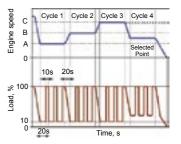





#### 2) ETC Cycle (European Transient Cycle)

This cycle consists of a second-by-second sequence of transient modes. It is based on road-type-specific driving patterns of HD engines installed in trucks and buses.

It is divided in three parts: 1/3 urban roads, 1/3 rural roads, 1/3 motorways.




#### 3) ELR Test (European Load Response)

Only diesel smoke is measured. ELR cycle is defined by fixed speed sampling and a random sampling.

The random sampling is represented by a random speed and by a random initial load.

Smoke measurements during the sampling must not exceed 20% of the highest value of close speeds or more than 5% of limit value. The biggest one is selected.



DELPHI

17

## Heavy Duty

Californian and US EPA HD standards become close to convergence from 2004

#### Vehicle classification

The limits apply for heavy-duty vehicles with a GVW  $\ge$  8.500 lbs (3.856 t) Engines are classified by end use GVWR: LHDDE: 8.500 – 19.500 lbs (California begins at 14.000 lbs) MHDDE: 19.500 – 33.000 lbs HHDDE: > 33.000 lbs

#### Testing

Emission testing is generally engine dynamometer based. Chassis certification is available in place of HD FTP Transient Cycle. Three sets of tests are required: Transient FTP Test and from MY 2007 (1998 for Consent Decree Manufacturers) Supplemental Emission Tests. Not To Exceed standards

## Diesel Engine – Emission Standards

Previous Emissions Limits (g/bhp.h) - EPA

|                         | Year      | НС  | со   | NOx | PM                 |
|-------------------------|-----------|-----|------|-----|--------------------|
|                         | 1991-1993 | 1.3 | 15.5 | 5.0 | 0.25               |
| Diesel Heavy Duty Truck | 1994-1997 | 1.3 | 15.5 | 5.0 | 0.10               |
|                         | 1998-2003 | 1.3 | 15.5 | 4.0 | 0.10               |
|                         | 1991-1992 | 1.3 | 15.5 | 5.0 | 0.25               |
|                         | 1993      | 1.3 | 15.5 | 5.0 | 0.10               |
| Urban Bus               | 1994-1995 | 1.3 | 15.5 | 5.0 | 0.07               |
|                         | 1996-1997 | 1.3 | 15.5 | 5.0 | 0.05 <sup>1)</sup> |
|                         | 1998-2003 | 1.3 | 15.5 | 4.0 | 0.05 1)            |

#### MY 2004 and later (g/bhp.h)

Applicable for both Heavy Duty Truck engines and Urban buses

|          | NMHC | NOx+NMHC | со   | PM   |
|----------|------|----------|------|------|
| Option 1 | N/A  | 2.4      | 15.5 | 0.10 |
| Option 2 | 0.5  | 2.5      | 15.5 | 0.10 |

<sup>1)</sup> Urban buses: 0.05g/bhp.h (certification) and 0.07g/bhp.h (in use) for 1996 ->

#### Smoke Test Limits

| Mode      | Accceleration (A) | Lugging (B) | Peak (C) |
|-----------|-------------------|-------------|----------|
| Opacity % | 20                | 15          | 50       |

Family Emissions Limits (g/bhp.h) GVW ≥ 8.500 lbs

| NOx + NMHC                                 | РМ   |
|--------------------------------------------|------|
| 4.5 or 4.5 w/ a limit of 0.5 on NMHC (ABT) | 0.25 |

Crankcase emissions added to tailpipe level prior to comparison to standard. Under Tier 2, PC, LDV and MDV up to 10,000 lbs used for personal transportation have to be type approved following LDV legislation.

#### MY 2007 and later (g/bhp.h)

|              | Standard           | Phase-In MY |      |      |      |  |
|--------------|--------------------|-------------|------|------|------|--|
|              | Stanuaru           | 2007        | 2008 | 2009 | 2010 |  |
| NOx          | 0.20               | 50%         | 50%  | 50%  | 100% |  |
| NMHC (E)     | 0.14               | 50%         | 50%  | 50%  | 100% |  |
| CO           | 15.5               | 100%        |      |      |      |  |
| PM           | 0.01               | 100%        |      |      |      |  |
| Formaldehyde | 0.01 <sup>1)</sup> | 100%        |      |      |      |  |

#### Phase-In options:

For MY 2007-2009 combined NOx+NMHC is possible, as defined in EPA, MY 2004. All other requirements to comply w/ MY 2007 standards. Max authorised 2006 NOx+NMHC TA: 50% of direct production.

#### ABT and FEL

| Model Year     | Family Emissions Limits (g/bhp.h) |      |  |  |
|----------------|-----------------------------------|------|--|--|
| model real     | NOx PM                            |      |  |  |
| Bef 2010       | 2.00                              | 0.02 |  |  |
| 2010 and later | 0.50                              | 0.02 |  |  |

#### Supplemental Test (see page 27)

- Weighted average exhaust emissions: max 1.0 times applicable emission standards or FEL.
- If NOx FEL < 1,5 g/bhp.h, gaseous exhaust emissions ≤ steady-state interpolated values (Maximum Allowable Emission Limits MAEL).



#### NTE Limits

- Max NMHC or NOx ≤ 1,5 times applicable NMHC or NOx standards or FELs
- If NOx FEL < 1,5 g/bhp.h, NMHC or NOx ≤ 1,25 times applicable NMHC or NOx standards or FELs
- Max PM ≤ 1,5 times applicable PM emission standards or FELs
- Max CO ≤ 1,25 times applicable CO emission standards or FELs

NTE limits apply for altitude ≤ 5,500 feet, ambient conditions of:

0 F -> 100 F at sea level; 0 F -> 86 F at 5500 ft

#### Crankcase emissions

No crankcase emissions discharged directly into the ambient atmosphere from 2007 MY, except for HD w/ turbochargers: emissions are added to exhaust emission

#### Portable Emission Measurement Systems (PEMS)

Nov. 2009 In use PEMS enforceable

## Otto-Cycle HD

#### Previous Emissions Limits (g/bhp.h)

| From 1991-1997    | HC <sup>1)</sup> | со   | NOx | CO at Idle 2) |  |  |
|-------------------|------------------|------|-----|---------------|--|--|
| ≤ 14.000 lbs GVWR | 1.1              | 14.4 | 5.0 | 0,5%          |  |  |
| > 14.000 lbs GVWR | 1.9              | 37.1 | 5.0 | 0,5%          |  |  |
| MY 1998 and later |                  |      |     |               |  |  |
| ≤ 14.000 lbs GVWR | 1.1              | 14.4 | 4.0 | 0,5%          |  |  |
| > 14.000 lbs GVWR | 1.9              | 37.1 | 4.0 | 0,5%          |  |  |

<sup>1)</sup> Organic Material Hydrocarbon equivalent (OMHCE) for methanol engines

<sup>2)</sup> All gasoline engine w/ catalyst and methanol engines No crankcase emissions allowed

#### MY 2005 and later (g/bhp.h)

| Emissions            | Standards | Option 1  |      | Option 2  |      |  |
|----------------------|-----------|-----------|------|-----------|------|--|
| Model Year           | 2005      | 2003-2007 | 2008 | 2004-2007 | 2008 |  |
| NMHC (E) + NOx       | 1.0       | 1.5       | 1.0  | 1.5       | 1.0  |  |
| CO GVWR ≤ 14.000 lbs |           | 14.4      |      |           |      |  |
| GVWR > 14.000 lbs    | 37.1      |           |      |           |      |  |

- Standard:
   100% compliance in MY 2005

   OBD: phase-in 2005-2007 (8.500-14.000 lbs GVWR)

   ORVR: phase-in 2005-2006 (8.500-10.000 lbs GVWR)

   Option 1:
   OBD: phase-in 2004-2007 (8.500-14.000 lbs GVWR)
- ORVR: phase-in 2004-2006 (8.500-10.000 lbs GVWR) Option 2: OBD: phase-in 2004-2007 (8.500-14.000 lbs GVWR) ORVR: phase-in 2004-2006 (8.500-10.000 lbs GVWR)

No crankcase emissions permitted

Idle CO

If no OBD certification: 0,50% of exhaust gas flow at idle

#### Full life Emissions Standards (at 120,000 miles)

| GVW (lbs)     | Emi      | (g/mile) |     |     |
|---------------|----------|----------|-----|-----|
| 0111 (155)    | NOx+NMHC | NMOG     | NOx | со  |
| 8.500-10.000  | -        | 0.28     | 0.9 | 7.3 |
| 10.000-14.000 | -        | 0.33     | 1.0 | 8.1 |

#### MY 2008 and later

Emission standards

| Standards (g/bhp.h) |      | Phase-in by MY |      |  |
|---------------------|------|----------------|------|--|
| Standards (g/brip.  | ,    | 2008           | 2009 |  |
| со                  | 14.4 | 100%           |      |  |
| NOx                 | 0.20 |                |      |  |
| NMHC (E)            | 0.14 | 50%            | 100% |  |
| PM                  | 0.01 |                |      |  |

#### ABT and FEL (g/bhp.h)

| MY     | NOx  | NMHC |
|--------|------|------|
| < 2011 | 0.8  | 0.4  |
| ≥ 2011 | 0.50 | 0.3  |

No crankcase emissions permitted



#### CARB Standards for 1985-2003 (g/bhp.h)

| Year | Total HC or | Optional           | со   | I     | NOx        | PI    | M    |
|------|-------------|--------------------|------|-------|------------|-------|------|
| rear | OMHCE 1)    | NMHC <sup>1)</sup> |      | Truck | Bus        | Truck | Bus  |
| 1985 | 1.3         | -                  | 15.5 | 5.1   | 5.1        | 0.60  | 0.60 |
| 1987 | 1.3         | -                  | 15.5 | 6.0   | 6.0        | 0.60  | 0.60 |
| 1991 | 1.3         | 1.2                | 15.5 | 5.0   | 5.0        | 0.25  | 0.10 |
| 1994 | 1.3         | 1.2                | 15.5 | 5.0   | 5.0        | 0.10  | 0.07 |
| 1996 | 1.3         | 1.2                | 15.5 | 5.0   | 4.0        | 0.10  | 0.05 |
| 1996 | 1.3         | 1.2                | 15.5 | 5.0   | 0.5-2.5 2) | 0.10  | 0.05 |

<sup>1)</sup> NMHC gasoline NG and LPG engines

OMHCE: methanol engines

<sup>2)</sup> Optional NOx standard between 0.5 and 2.5 by 0.5 g/bhp.h increments

# CARB Emissions Standards for engines used in Oct. 02 and subsequent (g/bhp.h)

|          | NOx+NMHC | Optional NOx+NMHC        | со   | PM           |
|----------|----------|--------------------------|------|--------------|
| Option 1 | 2.4      | 2.5 (NMHC ≤ 0.5 g/bhp.h) | 15.5 | 0.10         |
| Option 2 | N/A      | 0.3 to 1.8 in 0.3        | 15.5 | 0.03 to 0.01 |

#### Smoke: Similar to US-EPA smoke test

Acceleration (A): 20%; Lagging (B): 15%; Peak (C): 50% Opacity

Formaldehyde exhaust emissions (NTE)

MY 1993-95: 0.10 g/bhp.h

MY 1996 and subsequent: 0.05 gbhp.h

#### Standards from 2004

Similar to EPA standards (see page 18)

#### Standards from 2007

Similar to EPA standards (see page 19)

Clean Fuel Buses Fleet operators have to choose between operating:

- a diesel bus fleet \_ Diesel path
- an alternative-fuel bus fleet \_ Alternative Fuel Path

 Fleets in South Coast Air Quality Management District must follow altern. path 2007-2009: fleets > 30 must:

- a) buy new buses that are 0.2 g/bhph NOx -OR-
- b) on 1 to 1 basis, retrofit old buses w/ level 3 PM DECS w/eff. >40% if avail or w/ eff. >25% -OR-

DELPHI

| 22

c) obtain E.O. approval for non-conforming bus purchase



#### **Clean Fuel Buses**

| MY   | Diese                         | l Path                       | Alternative Fuel Path |                              |  |
|------|-------------------------------|------------------------------|-----------------------|------------------------------|--|
|      | NOx+NMHC                      | PM                           | NOx+NMHC              | PM                           |  |
| 2007 | 0.2                           | 0.01                         | 0.2                   | 0.01                         |  |
| 2008 | 15% of new p<br>for large fle | urchase ZEB's<br>eet (> 200) |                       |                              |  |
| 2010 |                               |                              |                       | urchase ZEB's<br>eet (> 200) |  |

Additional In-Use Engine Retrofit Requirements:

- Installation of certified (approved) NOx/PM reduction equipment
- Places NO, requirement places constraints on devices in 2007 Max NO, increase: 2007-2008: 30%; 2009+: 20%
- Manufacturers may install uncertified equipment as certific. process progresses
- Requires warranty coverage and in-use compliance testing

Emission standards for Diesel or dual-fuel urban bus engine (g/bhp.h)

| MY        | NOx | PM   | NMHC | Formaldehyde | со  |
|-----------|-----|------|------|--------------|-----|
| 2004-2006 | 0.5 | 0.01 | 0.05 | 0.01         | 5.0 |
| 2007+     | 0.2 | 0.01 | 0.05 | 0.01         | 5.0 |





#### HD Idling Emissions Reduction Program

- 2008+ GVWR > 14 k lbs must have automatic engine shutoff if

   after 5 min if park. brake on; 15 min if park. brake off
   b) cert. to 30 g/hr NOx over SET/FTR
- Sleeper equipped trucks no longer exempted from idling reduction requirement
- Delay of shutoff for < 30 min allowed for emission dev. performance (dash light requir.)
- Override allowed by PTO operation As portion of idling reduction program, auxiliary power supplies are regulated
- Primary engine certified 2007+: APU to be certified off-road (w/ Level 3 DPF) or routed ahead of primary engine DPF
- Primary engine 2006 or earlier: APU engine needs to be off-road certified (no DPF required)

5 min still applies w/in 100 ft of restricted areas.

- Scan tool allowed to extend idling to 60 min for service
- Fuel fired heaters: must comply w/ LEV requirements for fuel fired heaters LEV requirement for shutoff above 40F does NOT apply

 $\underline{\mbox{Foreign}\mbox{Trucks}}$  required to meet emission limits when entering the State from outside the US

#### Proposed Modification to Urban Bus Engines and Vehicles Rules

NOx standard for Diesel Hybrid-Electric Buses: 1.8 g/bhp.h MY 2004-2005 PM standard 0.01 g/bhp.h Test Procedure: SAE J2711

#### ZEB regulation: Modified Now 2007.

- Requires operators of fleets ≥ 200 buses on the diesel path to begin Advanced Demonstration Project with required ZEBs to be placed in revenue service by Jan. 1, 2009
- Delays purchase requirements to 2011 for operators on the diesel path and 2012 for operators on the alternative fuelled bus path
- Extends the date to fulfill the full purchase requirements to 2026 for all fleets
- Requires technical review in 2009 by Board
- Credits available to fleet operators for early deployment of ZEBs

Portable Emission Measurement Systems (PEMS) PEMS enforceable Nov, 2009



## **Heavy Duty**

#### Otto-Cycle Medium and Heavy-Duty vehicles (g/bhp.h)

| MY        | Emission Cat                       | nission Cat NMHC+NOx   |      | NOx  | CO   | нсно  | PM    |  |  |  |  |
|-----------|------------------------------------|------------------------|------|------|------|-------|-------|--|--|--|--|
|           | Medium Duty 8.501 – 14.000 lbs GVW |                        |      |      |      |       |       |  |  |  |  |
| 2004      | ULEV                               | 2.4 or 2.5 w/ 0.5 NMHC | -    | -    | 14.4 | 0.05  | -     |  |  |  |  |
|           | SULEV                              | 2.0                    | -    | -    | 7.2  | 0.025 | -     |  |  |  |  |
| 2005-2007 | ULEV                               | 1.0                    | -    | -    | 14.4 | 0.05  | -     |  |  |  |  |
|           | SULEV                              | 0.5                    | -    | -    | 7.2  | 0.025 | -     |  |  |  |  |
| 2008, +   | ULEV                               | -                      | 0.14 | 0.20 | 14.4 | 0.01  | 0.01  |  |  |  |  |
|           | SULEV                              | -                      | 0.07 | 0.10 | 7.2  | 0.005 | 0.005 |  |  |  |  |
|           |                                    | HD > 14.000 lbs G      | w    |      |      |       |       |  |  |  |  |
| 2004      | -                                  | 2.4 or 2.5 w/ 0.5 NMHC | -    | -    | 37.1 | 0.05  | -     |  |  |  |  |
| 2005-2007 | -                                  | 1.0                    | -    | -    | 37.1 | 0.05  | -     |  |  |  |  |
| 2008, +   | -                                  | -                      | 0.14 | 0.20 | 14.4 | 0.01  | 0.01  |  |  |  |  |

Idle CO: if aftertreatment technology is used and not certified OBD max CO: 0,50% Compression Ignition Medium Duty optional standards (8,601-14,000 lbs GVW) (g/bhp.h)

| MY     | Em. Cat    | со   | NMHC+NOx       | NMHC | NOx | нсно  | РМ    |
|--------|------------|------|----------------|------|-----|-------|-------|
| 2004 - | ULEV Opt A | 14.4 | 2.5 NMHC ≤ 0.5 | -    | -   | 0.050 | 0.10  |
| 2006   | ULEV Opt B | 14.4 | 2.4            | -    | -   | 0.050 | 0.10  |
| 2007,  | ULEV       | 15.5 | -              | 0.14 | 0.2 | 0.050 | 0.01  |
| +      | SULEV      | 7.7  | -              | 0.07 | 0.1 | 0.025 | 0.005 |

#### In-use compliance: 90 000 miles

Phase-in: (see page 19)

ESC and NTE test: from MY 2005

Identical to ESC and NTE HD diesel

NTE: max 1,25 times FTP emission standards

Operation within the NTE control zone

ESC: Emissions equivalent to FTP emissions standards

#### Emission Useful Life Standards and Emissions Warranty

|                                  | CARB        | EPA                  |  |  |  |  |  |
|----------------------------------|-------------|----------------------|--|--|--|--|--|
| USEFUL Life (Yr/mi/hours)        |             |                      |  |  |  |  |  |
| LHDDE                            | 10/110k     | 8/110k <sup>2)</sup> |  |  |  |  |  |
| MHDDE                            | 10/185k     | 10/185k              |  |  |  |  |  |
| HHDDE                            | 10/435k/22k | 10/435k/22k          |  |  |  |  |  |
| Emissions Warranty <sup>1)</sup> |             |                      |  |  |  |  |  |
| All Class                        | 5/100k/3k   | 5/100k               |  |  |  |  |  |

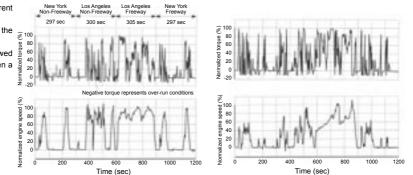
DELPHI

25

1) Longer of listed and mechanical warranty length

2) 10 yrs for PM and NOx



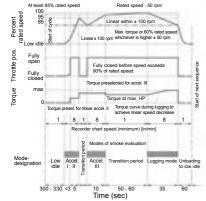

#### A. FTP Test Cycles

#### 1. Heavy Duty Diesel Transient Cycle (HDDTC)

Test cycle comprised of four phases representing different driving conditions.

Phases one and four are the same.

Test is a cold start followed by a 20 min soak and then a repeat of the test cycle.




#### 2. Heavy Duty Gasoline Transient Cycle (HDGTC)

Heavy Duty



#### 3. Diesel Smoke



#### B. Supplemental 2004 and 2007 test cycles

#### 1. Steady State Test discrete - Mode Cycle up to MY 2009

As a result of the Consent Decree of 1998, most engine manufacturers are required to meet the applicable FTP transient emission standard during the SET schedule (among other requirements).

Supplement Steady State test (SSS) is based on the EU ESC cycle (see page 18) It contains 13 fixed modes and 3 by random selected modes.

The alternate procedure for steady state test may be used through MY 2009. The ramped-modal test is mandatory in MY 2010.

 <u>2. Ramped Modal Cycle Steady-State SET, MY 2007</u> (Warmed-up engine test) As an alternative the steady state cycle can be made with a discrete mode cycle through MY 2009.

Optional through MY 2009, mandatory from MY 2010.





Ramped Modal test involves a single and continuous emission measurement as the engine operates over the test modes in a defined sequence.

It also includes short transition segments between modes.

| RMC Mode        | Time in Mode (s) | Engine Speed      | Torque (%)        |
|-----------------|------------------|-------------------|-------------------|
| 1a Steady-state | 170              | Warm Idle         | 0                 |
| 1b Transition   | 20               | Linear Transition | Linear Transition |
| 2a Steady-state | 170              | A                 | 100               |
| 2b Transition   | 20               | A                 | Linear Transition |
| 3a Steady-state | 102              | A                 | 25                |
| 3b Transition   | 20               | A                 | Linear Transition |
| 4a Steady-state | 100              | A                 | 75                |
| 4b Transition   | 20               | A                 | Linear Transition |
| 5a Steady-state | 103              | A                 | 50                |
| 5b Transition   | 20               | Linear Transition | Linear Transition |
| 6a Steady-state | 194              | В                 | 100               |
| 6b Transition   | 20               | В                 | Linear Transition |
| 7a Steady-state | 219              | В                 | 25                |
| 7b Transition   | 20               | В                 | Linear Transition |

| 8a Steady-state  | 220 | В                 | 75                |
|------------------|-----|-------------------|-------------------|
| 8b Transition    | 20  | В                 | Linear Transition |
| 9a Steady-state  | 219 | В                 | 50                |
| 9b Transition    | 20  | Linear Transition | Linear Transition |
| 10a Steady-state | 171 | С                 | 100               |
| 10b Transition   | 20  | С                 | Linear Transition |
| 11a Steady-state | 102 | С                 | 25                |
| 11b Transition   | 20  | С                 | Linear Transition |
| 12a Steady-state | 100 | С                 | 75                |
| 12b Transition   | 20  | С                 | Linear Transition |
| 13a Steady-state | 102 | С                 | 50                |
| 13b Transition   | 20  | Linear Transition | Linear Transition |
| 14a Steady-state | 168 | Warm Idle         | 0                 |

3. Load Response Test Applicable to HD diesel, MY 2004-2007.

This test is conducted on a dynamometer. The purpose is to measure the brake specific gaseous and particulate emissions from a HD diesel engine as it is suddenly loaded, with its fuelling lever, at a given engine operating speed. Results of this test are not compared to emission standards.





#### 4. Not To Exceed (NTE) test

As a result of the Consent Decree of 1998, most engine manufacturers are EPA required to maintain engine emissions below a limit of 1,25x applicable FTP standards during engine operation in a speed-load zone below the engine's torque curve.

Limit increases to 1.5 X FTP standard in MY 2007.

No specific drive cycle.

Applicable to steady state AND transient maneuvers at varying ambient temperatures and up to 5500 ft elevation.

Emissions measured over intervals a minimum of 30 sec in length.

#### EVAPORATIVE EMISSION LIMITS

| MY    | GVWR<br>(Lbs) | 3 Diurnal +<br>Hot soak <sup>1)</sup> | 2 Diurnal +<br>Hot soak | Running<br>Loss | Refuelling<br>spitback <sup>2)</sup> |  |
|-------|---------------|---------------------------------------|-------------------------|-----------------|--------------------------------------|--|
| 1998  | ≤ 14,000      | 3.0 g/test                            | 3.5 g/test              | 0.05 g/test     | 1.0 g/test                           |  |
| MY, + | > 14,000      | 4.0 g/test                            | 4.5 g/test              | 0.05 g/test     | -                                    |  |
| 2008  | ≤ 14,000      | 1.4 g/test                            | 1.75 g/test             | 0.05 g/test     | 1.0 g/test                           |  |
| MY, + | > 14,000      | 1.9 g/test                            | 2.3 g/test              | 0.05 g/test     | -                                    |  |

<sup>1)</sup> Evaporative emissions limits for NG and LPG fuelled HDDC engines

2) Methanol – Gas fuelled engines only

#### CARR

From 2004 MY. > 8,500 lbs

| 3 Diurnal + Hot soak               | Running Loss | 2 Diurnal + Hot soak |
|------------------------------------|--------------|----------------------|
| 1.00 g/test                        | 0.05 g/test  | 1.25 g/test          |
| Phase-in schedule:<br>MY 2004: 40% | MY 2005: 80% | MY 2006, Y: 100%     |



## JAPAN

#### Vehicle categories

Original weight category: vehicles (trucks, buses) > 2,5t GVW

From 2001 standards: gasoline vehicles > 3,5t GVW. From 2005 long term standards: diesel vehicles > 3,5t GVW

#### Initial Standards

| Diesel engines                   | Diesel engines   |        | :0                 | н      | С                  | N                     | Ox                    | Р      | М                  | Smoke 3) |
|----------------------------------|------------------|--------|--------------------|--------|--------------------|-----------------------|-----------------------|--------|--------------------|----------|
|                                  |                  | Max 1) | Mean <sup>2)</sup> | Max 1) | Mean <sup>2)</sup> | Max 1)                | Mean <sup>2)</sup>    | Max 1) | Mean <sup>2)</sup> |          |
| Japan 88/89 (ppm)<br>6-Mode test | GVW > 2,5t       | 980    | 790                | 670    | 510                | 520 (DI)<br>350 (IDI) | 400 (DI)<br>260 (IDI) | -      | -                  | -        |
| Japan 94 (g/kWh)                 | 2,5t < GVW ≤ 12t | 9,2    | -                  | 3,8    | -                  | 5,8                   | -                     | 0,49   | -                  | 40%      |
| 13 Mode test                     | GVW > 2,5t       | 9,2    | 7,4                | 3,8    | 2,9                | 6,8 (IDI)<br>7,8 (DI) | 5.0 (IDI)<br>6.0 (DI) | 0,96   | 0,70               | 40%      |
| Japan 97 4) (g/kWh)              | > 2,5t           | 9,2    | 7,4                | 3,8    | 2,9                | 5,8                   | 4,5                   | 0,49   | 0,25               | 40%      |
| Gasoline engines (13 Mode test)  |                  |        | •                  |        |                    |                       | •                     |        |                    |          |
| Japan 98 (g/kWh)                 | > 2,5t           | 68     | 51                 | 2,29   | 1,80               | 5,9                   | 4,5                   | -      | -                  | -        |

<sup>1)</sup> To be met as type approval limit if sales are less than 2000 per vehicle model per year and generally as an individual limit in series production

<sup>2)</sup> To be met as a type approval limit and as a production average

<sup>3)</sup> Smoke measured under 3 full load conditions (at 40, 60 or 100% of rated speed) and under free load acceleration

<sup>4)</sup> 2,5T – 3,5T: introduction in 1997; 3,5T – 12T in 1998; > 12T in 1999





## JAPAN

#### New Short Term Standards (13-Mode) Diesel engines

| Implementation dates:          | 2,5t < GVW ≤ 12t          | GVW > 12t                 |
|--------------------------------|---------------------------|---------------------------|
| New vehicles                   | From Oct. 03 to Oct. 05   | From Oct. 04 to Oct. 05   |
| Existing and Imported vehicles | From Sept. 04 to Sept. 07 | From Sept. 05 to Sept. 07 |

| CO (g/kWh) |      | HC (g | /kWh) | NOx (g | g/kWh) | PM (g | /kWh)   | Smoke |
|------------|------|-------|-------|--------|--------|-------|---------|-------|
| Max        | Mean | Max   | Mean  | Max    | Mean   | Max   | Mean    | -     |
| 3.46       | 2.22 | 1.47  | 0.87  | 4.22   | 3.38   | 0.35  | 0.18 1) | 25%   |

<sup>1)</sup> JAMA voluntary adopted a level of 0.05 g/kWh

#### Gasoline engines (GVW > 3,5T)

Implementation dates: new vehicles: from Oct. 01

Existing and imported vehicles: from Sept. 03

Exhaust emissions:

| CO (g | /kWh) | HC (g | /kWh)        | NOx (g | g/kWh) |  |
|-------|-------|-------|--------------|--------|--------|--|
| Max   | Mean  | Max   | Max Mean Max |        |        |  |
| 26.0  | 16.0  | 0.99  | 0.58         | 2.03   | 1.40   |  |

Evaporative emissions:

| Running                                    | 25 sec idle                                |  |  |  |  |  |
|--------------------------------------------|--------------------------------------------|--|--|--|--|--|
|                                            | 4x 11-Mode + 3x (24 sec idle + 10-15 Mode) |  |  |  |  |  |
| Hot Soak Loss (HSL)                        | 1 Hr SHED at 27 ± 4°C                      |  |  |  |  |  |
| Diurnal Breathing                          | 1 heat build in 24 hours                   |  |  |  |  |  |
| Loss (DBL)                                 | Cycle from 20°C - 35°C                     |  |  |  |  |  |
| Emission standard: HSL + DBL: 2 grams/test |                                            |  |  |  |  |  |

#### Japan 05 Standards

Diesel vehicles > 3,5T GVW

HC will be measured as NMHC

Test cycle: New JE05 transient cycle (See page 33)

|          | CO (g/kWh) |      | NMHC | (g/kWh) | NOx (g | Ox (g/kWh) PM (g/kWh) |       |       | Smoke |
|----------|------------|------|------|---------|--------|-----------------------|-------|-------|-------|
|          | Max        | Mean | Max  | Mean    | Max    | Mean                  | Max   | Mean  | -     |
| Diesel   | 2.95       | 2.22 | 0.23 | 0.17    | 2.7    | 2.0                   | 0.036 | 0.027 | 25%   |
| Gasoline | 21.3       | 16.0 | 0.31 | 0.23    | 0.9    | 0.7                   | -     | -     | -     |

Application: from Oct. 05 for domestic new vehicles

from Sept. 07 for existing and imported vehicles



**Regional Diesel PM Emissions standards** 

| GVW > 2.5T |                     | Prefecture |                   |  |  |  |  |  |
|------------|---------------------|------------|-------------------|--|--|--|--|--|
|            | Tokyo               | Saitama    | ma Kanagawa Chiba |  |  |  |  |  |
| From 2003  |                     | 0.25       | g/kWh             |  |  |  |  |  |
| From 2006  | 0.180 g/kWh No plan |            |                   |  |  |  |  |  |

Vehicles not conforming to the required PM standards will not be operated within the specified region.

Two exceptions: - vehicle less than 7 years old

- vehicle fitted with a PM trap

### Durability:

Diesel: 3.5 < GVW ≤ 8t: 250,000 km 8 < GVW ≤ 12t: 450,000 km GVW > 12t: 650,000 km

Gasoline: 180.000 km

**OBD:** mandatory

Diesel engine smoke: test procedure Japan 4-Mode Opacity limit: 25%

## Post New Long Term Emission Standards

#### Trucks and Buses GVW > 3.5t (Mean/Max)

| g/KWh        |             |         | NMHC      | со        |
|--------------|-------------|---------|-----------|-----------|
| Diesel       | 0,010/0,013 | 0,7/0,9 | 0,17/0,23 | 2,22/2,95 |
| Gasoline/LPG | 0,010/0,013 | 0,7/0,9 | 0,23/0,31 | 16,0/21,3 |

PM for gasoline veh apply only to DI veh equipped w/ NOx absorber cat Application date: Domestic vehicles

plication date. Domestic vehicles

Diesel: Heavy Duty > 3,500 kg and  $\leq$  12,000 kg: 01 October 2010 Gasoline: 01 October 2009

DELPHI

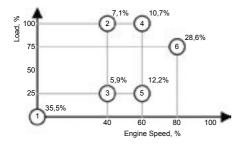
| 32

Imported vehicles: 11 months later

Test cycle: JE05

Diesel Sulfur content: 10ppm

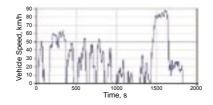
#### 2015 Fuel Efficiency Standards for Diesel truck and bus


| GVW(t)           | 3,5-7,5 |       | 7,5-8 | 8-10 | 10-12 | 12-14 | 14-16 | 16-20 | >20  |      |      |
|------------------|---------|-------|-------|------|-------|-------|-------|-------|------|------|------|
| Max load cap (t) | <1,5    | 1,5-2 | 2-3   | >3   |       |       |       | -     |      |      |      |
| 2015 FE          | 10,83   | 10,35 | 9,51  | 8,12 | 7,24  | 6,52  | 6,00  | 5,69  | 4,97 | 4,15 | 4,04 |



## JAPAN DRIVING CYCLES

#### 6-Mode cycle


The engine was tested over 6 different speed and load conditions. The modes were ran in sequence and the duration of each mode was 3 min. Measurements were expressed in ppm (volumetric concentration)



#### New driving cycle JE05 (also known as ED12)

The JE05 cycle becomes effective from 2005 for both diesel and gasoline applications. It is based on Tokyo driving conditions. The test cycle is defined through vehicle speed Vs. time points, that's requiring conversion to engine conditions.

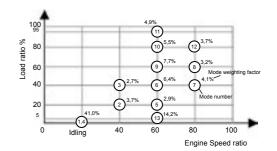
Duration: 1829 s Average speed: 26,94 km/h Max speed: ≈ 88 km/h



DELPHI

33




## JAPAN DRIVING CYCLES

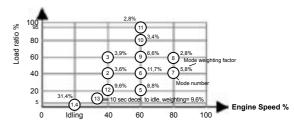
#### 13-Mode cycle

The 13-Mode cycle replaced the 6-Mode cycle. It includes a sequence of 13 steady-state modes. Measurements are expressed in g/kWh. The test represents low-speed driving conditions, specified by low average engine loads and low exhaust temperatures.

Diesel 13-Mode cycle

| Mode | Speed        | Load | Weighting factor |
|------|--------------|------|------------------|
|      | % of nominal | %    |                  |
| 1    | Idle         | -    | 0,410/2          |
| 2    | 40           | 20   | 0,037            |
| 3    | 40           | 40   | 0,027            |
| 4    | Idle         | -    | 0,410/2          |
| 5    | 60           | 20   | 0,029            |
| 6    | 60           | 40   | 0,064            |
| 7    | 80           | 40   | 0,041            |
| 8    | 80           | 60   | 0,032            |
| 9    | 60           | 60   | 0,077            |
| 10   | 60           | 80   | 0,055            |
| 11   | 60           | 95   | 0,049            |
| 12   | 80           | 80   | 0,037            |
| 13   | 60           | 5    | 0,142            |




DELPHI

34

# JAPAN DRIVING CYCLES

Gasoline 13-Mode cycle

| Mode | Speed            | Load             | Weighting factor |
|------|------------------|------------------|------------------|
|      | % of nominal     | %                |                  |
| 1    | Idle             | -                | 0,314/2          |
| 2    | 40               | 40               | 0,036            |
| 3    | 40               | 60               | 0,039            |
| 4    | Idle             | -                | 0,314/2          |
| 5    | 60               | 20               | 0,088            |
| 6    | 60               | 40               | 0,117            |
| 7    | 80               | 40               | 0,058            |
| 8    | 80               | 60               | 0,028            |
| 9    | 60               | 60               | 0,066            |
| 10   | 60               | 80               | 0,034            |
| 11   | 60               | 95               | 0,028            |
| 12   | 40               | 20               | 0,096            |
| 13   | 40 <sup>1)</sup> | 20 <sup>1)</sup> | 0,096            |



<sup>1)</sup> Deceleration to idle



Heavy Duty

# REQUIREMENTS IN OTHER AREAS OF THE WORLD

| Country   | Requirement                                                                                                                                       | Canada        | Average NOx standards:                                                                                                                    |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| Argentina | Vehicles with max mass > 3,856kg – ECE 49<br>Euro III: TA: 01 Jan 06 – Manufacture and import: 01 Jan 07                                          | (2)<br>Chile  | 07 MY: 0,20 gpm; 08MY: 0,14 gpm; 09MY: 0,07 gpm<br>Diesel HD: from 01 Oct 2006, Euro III or US98 HD Diesel                                |
| Australia | Euro IV: TA: 01 Jan 09 – Manufacture and import: 01 Jan 11<br>ADR 80/02:Euro IV: From 01 Jan 07 for new model vehicles                            |               | Gasoline HD:from 01 Sep 98, CO:37.1; HC:1.9; NOx:5.0g/bhp*h<br>Santiago:                                                                  |
|           | From 01 Jan 08 for all produced vehicles<br>US04 or Japanese 05 considered as alternative                                                         |               | EU III/US98 w/ DPF and OBD: new bus: 2009; new truck: 2010<br>EU IV/US07 w/ DPF and OBD: new bus, new truck: 2012                         |
|           | ADR 80/03: Euro V: From 01 Jan 10 for new model vehicles<br>01 Jan 11 for all produced vehicles<br>US 07 or Japanese 05 considered as alternative | Colombia      | From 97: US 13 procedure CO: 25.0; HC+NOx: 10.0g/hph<br>Buses: EU II<br>Diesel smoke: from 01, free acceleration opacity test limits: 40% |
|           | 10ppm Sulfur diesel: from 01 Jan 09                                                                                                               | Costa         | US HDTTC (US 91) or ECE 49 (Euro I)                                                                                                       |
| Brazil    | Proconve P-5, equiv. Euro III: from 01 Jan 06                                                                                                     | Rica          | ECE 24.03 (smoke)                                                                                                                         |
|           | Proconve P-6, equiv Euro IV: from 01 Jan 09 - postponed                                                                                           | Croatia       | ECE 49.02 + ECE 24.03                                                                                                                     |
|           | New proposed introduction date: Jan 2013                                                                                                          | Ecuador       | US94 or EU II                                                                                                                             |
|           | Durability: 160,000 km or 5 years<br>Smoke: From Jan 2000: ECE R24.03                                                                             | Hong-<br>Kong | From 01 Oct 07: Euro IV or US HDV 2005 or Japan HDV 2005<br>E-OBD (EC 2005/55) or OBD US of J-OBD                                         |
| Canada    | Canada Tier 2 requirements, similar to US Tier 2                                                                                                  |               | Proposal: EU V from 2011                                                                                                                  |
|           | No emission averaging, banking and trading option                                                                                                 | Iceland       | Euro standards adopted                                                                                                                    |





# **Delphi Probe Air Meters**

Delphi Probe Air Meters feature a patented "dimple" flow management design for outstanding performance. And, heated sensing elements offer proven durability with more than 100 million in the field over the past 10 years.

# **Delphi Smart Remote Actuator**

Offers durability, adaptability and flexible mounting options. Integrated electronics provide improved EGR flow control with enhanced accuracy resolution.

For variable geometry applications, it also manages turbo control.

Visit www.delphi.com/manufacturers/cv/powertrain/



Innovation for the Real World



# REQUIREMENTS IN OTHER AREAS OF THE WORLD

| India     | Test cycle: ECE 49 - Mode 13                                           | New         | Requir. for veh. presented for inspection in NZ for the first time: |
|-----------|------------------------------------------------------------------------|-------------|---------------------------------------------------------------------|
|           | EU II: 04/2005: nation wide                                            | Zealand     | - Gasoline: As of 2007                                              |
|           | EU III: 04/2005: Delhi + selected cities; 04/2010: nation wide         |             | New model: ADR 80/01, US 98 or Japan 00/02                          |
|           | EU IV: 04/2010: Delhi + selected cities; 2014: nation wide             |             | Existing model: ADR 80/01, US 98 or Japan 00/02                     |
|           | Inter-states buses and trucks in use:                                  |             | - Diesel: As of 2008                                                |
|           | Delhi: 01 Apr 07: min EU I; 01 Apr 11: min EU II                       |             | New mod: ADR 80/01 and 30/01, EU IV, US04 or Jap 02/04              |
|           | Other cities: 01 Apr 08: Euro I                                        |             | All mod: ADR 80/01 and 30/01, EU III, US04 or Jap 02/04             |
|           | National Capital Region: proposal of restriction of vehicle:           |             | EU IV required from Jan 2009                                        |
|           | vehicle > 10 yrs forbidden; EU III mandatory for all goods vehicles    |             | - EU V TA: 01Jan11; FR: 01Jan12                                     |
| Indonesia | Diesel M2, M3, N2, N3: ECE 49.02 Stage 2                               | Norway      | Euro standards adopted                                              |
|           | New type motor vehicles: 01 Jan 05                                     | Peru        | Euro III: form 2007                                                 |
| laraal    | Motor vehicles in current production: 01 Jan 07                        | Philippines | From 01 Jan 03: Euro I, ECE 49.02                                   |
| Israel    | European standards applicable: EU V (01 Oct 08);<br>EU VI ( 31 Dec 12) | PR of China | Applicable standards: GB 17691-2005 equivalent to EU standards      |
|           | For vehicle produced in USA: 40CFR Part 86                             |             | Beijing:                                                            |
| Malauria  | · · ·                                                                  |             | Stage III (EU III - ESC+ELR): Dec 05                                |
| Malaysia  | HD Diesel engines: Euro II                                             |             | Stage IV (EU IV - ESC+ELR+ETC): Jan 08                              |
| Mexico    | Equivalent to US federal regulations (HDDTC) from 1998                 |             | Stage V (EU V - ESC+ELR+ETC): Jan 2012                              |
|           | From July 2008: US 2004 or Euro IV                                     |             | Nation wide:                                                        |
| Nepal     | Since Jan 2000, Euro I                                                 |             | Stage III: TA: 01 Jan 08                                            |



# REQUIREMENTS IN OTHER AREAS OF THE WORLD

| PR of<br>China (2) | Stage IV: TA: 01 Jan 2013<br>Durability: Recommended test cycle: Japan 05<br>Gasoline: 80,000 km or 5 yrs; shortest test mileage: 50,000 km<br>Diesel: (mileage (km); Util. time (yr); shortest test mileage (km))    |                    |                    |         |                   |                 |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------------|---------|-------------------|-----------------|
|                    | M2                                                                                                                                                                                                                    | M3<br>(GVM ≤ 7,5t) | M3<br>(GVM > 7,5t) | N2      | N3<br>(GVM ≤ 16t) | N3<br>GVM > 16t |
|                    | 80,000                                                                                                                                                                                                                | 100,000            | 250,000            | 100,000 | 100,000           | 250,000         |
|                    | 5                                                                                                                                                                                                                     | 5                  | 6                  | 5       | 5                 | 6               |
|                    | 50,000                                                                                                                                                                                                                | 60,000             | 80,000             | 60,000  | 60,000            | 80,000          |
| Russia             | Ecological Class 2 (ECE 49.02 Stage 2) from 01 Jan 06<br>Ecological Class 3: (ECE 49.04-A) from 01 Jan 08<br>Ecological Class 4: (ECE 49.04-B1) from 01 Jan 10<br>Ecological Class 5: (ECE 49.04-B2 C) from 01 Jan 14 |                    |                    |         |                   |                 |
| Saudi Arabia       | ECE R49 (Saudi standards 673/1991)                                                                                                                                                                                    |                    |                    |         |                   |                 |
| Singapore          | Euro II from 01 Jan 01                                                                                                                                                                                                |                    |                    |         |                   |                 |
| South Africa       | ECE 49-02 B (EU II); Alternative: US 98, Japan 98 or ADR 80/00<br>New TA: Jan 06; all production: Jan 10<br>Proposed EU III new TA: Jan 2010; all production: Jan 2012                                                |                    |                    |         |                   |                 |

| South<br>Korea | From Jan 03: EU III equiv. Test cycle: Jap Diesel 13-Mode<br>EU V from Jul 09 (TA); Jul 2010 (FR)<br>Durability: 300.000 km or 10 yrs |  |  |
|----------------|---------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Switzerland    | EU standards adopted                                                                                                                  |  |  |
| Taiwan         | US HDDTC from 01 Jul 93; From 2006: EU IV                                                                                             |  |  |
| Thailand       | Diesel HDV Euro III (TIS 2315-2550)<br>From 2012: EU IV (TIS 2315-2551)                                                               |  |  |
| Turkey         | From 2007: EU IV                                                                                                                      |  |  |
| Vietnam        | ECE 49-02 / Euro II (TCVN 6565-1999)<br>Proposal: Euro III in 2008<br>Euro IV in 2010<br>Euro V: declared application time in 2010    |  |  |



OBD permits rapid detection of failure of emission critical components and systems on vehicles. European EOBD from Euro IV

OBD tests are made over the ESC test cycle where the length of each mode is reduced to 60 seconds.

| Condition for malfunction<br>Emissions increase above total threshold | NOx (g/kWh) | PM (g/kWh) |
|-----------------------------------------------------------------------|-------------|------------|
| Row A (2005) EURO IV                                                  | 7.0         | 0.1        |
| Row B (2008) EURO V                                                   | 7.0         | 0.1        |
| Row C (EEV)                                                           | 7.0         | 0.1        |

#### OBD stage I (EURO IV): Diesel engines only

TA: from 01 Oct. 2005 FR: from 01 Oct. 2006

Monitoring area

- Reduction in the efficiency of the catalyst
- Complete removal of a catalyst
- Reduction in the efficiency of the DeNOx System
- Reduction in the efficiency of the diesel particulate system
- Reduction in the efficiency of the combined DeNOx-particulate filter system
- As an alternative, OBD systems may monitor for major failure of:
- Catalyst (separated unit or part of a DeNOx system or of a diesel particulate filter)
- DeNOx system
- Particulate filter
- Combined DeNOx particulate filter system

#### OBD stage II (EURO V): applicable for diesel and gas engines

TA: from 01 Oct. 2008 FR: from 01 Oct. 2009

Monitoring area: Stage I monitoring area, except monitor for MFF only not enough + Interface between the engine electronic control unit (EECU) and any other powertrain or vehicle electrical or electronic system for electrical disconnection.

#### Additional requirements for both stage I and stage II

- Monitoring of the fuel-injection system electronic, fuel quantity and timing actuator for circuit continuity and total functional failure.
- Any other emis. rel. component (air flow, EGR, etc) if a malfunction causes increase above threshold.
- Check of circuit continuity of any other emis. rel. component connected to computer, unless monitored otherwise
- In case of after treatment system using a consumable reagent, monitoring of lack of any required reagent

#### General Requirements:

- Standardisation of emission related fault codes, data transfer, diagnostic tools and connector according to ISO standards
- Repair information to be provided, excluding information covered by intellectual rights or that constitutes specific know-how of manufacturers/suppliers

# **Additional Emissions-Related Requirements**



#### **Requirements for Correct Operation of NOx Control Measures**

Application date: TA from 09 Nov 2006 FR from 01 Oct 2007

- In case of engine systems requiring a reagent, NH<sub>3</sub> emissions over the applicable emissions test cycle, do not exceed 25 ppm (mean value).
- 2) Engine NOx control
  - Incorrect operation of the NOx control monitored => MIL
- NOx level > 1,5 g/kWh above the applicable NOx limit (See p. 10) => MIL
- NOx level exceed OBD (7,0 g/kWh) => torque limiter activation
- Record of the fault for at least 400 days or 9600 hours of engine operation
- Alternative method possible if use of EGR only for NOx emission control
- 3) Reagent control
  - Warning when level of reagent < 10% of the tank or < level corresponding to the driving distance possible w/ the fuel reserve level
  - Reagent consumption to be monitored
  - Consumption deviated by > 50% => torque limiter activation
  - Reagent indicator on dashboard
  - Reagent tank empty => torque limiter activation
  - Wrong reagent quality/ concentration => torque limiter activation
  - Interruption in reagent dosing activity => torque limiter activation

- 4) Torque limiter value of:
- Max 60% of max torque for N3 > 16 tons, M1, M3/III and M3/B > 7,5 tons
- Max 75% of max torque for N1, N2, N3  $\leq$  16 tons, 3.5  $\leq$  M1  $\leq$  7.5 tons M2, M3/I, M3/II, M3/A, M3/B  $\leq$  7,5 tons Deactivation of the torque lim. not feasible by switch or maintenance tool
- 5) Operating conditions of the emission control monitoring system
- ambient temperature: -7°C -> 35°C
- altitude below 1600 m
- engine coolant temperatures > 70°C
- 6) Emission control monitoring system monitored for
- electrical failures
- removal or deactivation of any sensor
- if failure not remedied within 50 hrs engine operation => torque limiter

#### EU VI OBD requirements: not known yet at date of printing



### EPA HD OBD

Identifies deteriorations and malfunctions to exceed the defined threshold values according to HDDTC or HDGTC procedures.

Driver is notified upon detection (MIL).

Standardization of emission related fault codes, data transfer, diagnostic tools and connector according to ISO standards.

#### Monitoring area

- Catalysts and particulate traps
- Engine misfire
- Oxygen sensors
- Evaporative leak
- Other emission control systems (EGR)
- Other emission related engine components

California OBD II compliance as an option.

### EPA OBD phase-in, GVWE > 14,000 lbs

| MY   | OTTO & Diesel Cycle Phase-In |
|------|------------------------------|
| 2010 |                              |
| 2011 |                              |
| 2012 |                              |
| 2013 | 100% compliance 1)           |

1) Alternative fuel waivers available



#### CARB OBD requirements MY 2010,+ (HD >14.000 lbs)

Monitoring: NOx conversion efficiency for SCR

NOx absorber and lean NOx catalysts

Functional check of any other SCR system components PM monitoring systems when PM > Defined threshold values Fuel system and misfire

DPF too frequent or infrequent regeneration

Comprehensive component monitoring (input/output devices)

Crankcase ventilation system

Engine cooling system

FGR

Boost pressure control system

Variable valve timing and/or control

Exhaust gas sensor

Evaporative system (gasoline only)

Cold start emission reduction strategy (gasoline only)

HC conversion efficiency for oxidation catalysts

NMHC conversion catalysts (all, including ammonia slip catalysts) Secondary air delivery system

From 2010-2019 MY, exemptions apply for alternate-fuelled vehicles

#### CARB OBD proposals MY 2013,+ (HD > 14.000 lbs)

Monitorina: In-use Monitorina Frequency NMHC Catalyst: Proper feedgas to SCR catalyst (NO to NO, conversion) Clean-up catalysts (for use downstream of SCR catalysts)

#### WWH - OBD: Worldwide Harmonized Heavy Duty OBD

Adopted on November 15, 2006

The GTR is split in two parts:

- generic OBD requirements (out of booklet scope)
- specific OBD emissions related

The OBD systems will have to:

- detect malfunctions
- indicate their occurrence by means of a malfunction indicator (MI)
- identify the area of these malfunctions
- store this information in computer memory
- communicate this information off-board
- It applies to HD diesel fuelled C.I. engine systems OBD test cycle: WHTC (see page 4)

### Additional Emissions-Related Requirements



### WWH – OBD: Worldwide Harmonized Heavy Duty OBD Classification of malfunctions

 $\underline{\text{Class A:}}$  malfunction when OBD threshold limits (OTL) are assumed to be exceeded

<u>Class B1:</u> malfunction can lead to emissions above the OTLs but for which the exact influence on emission cannot be estimated

 $\underline{\text{Class B2:}}$  malfunction that can influence the emissions but not to a level that exceeds the OTLs

<u>Class C:</u> malfunction that can influence the emissions but to a level that would not exceed the regulated emission limits

#### Monitoring area:

Variable valve timing system

Electric, electronic components monitoring

Engine Cooling system monitoring

Lean NOx trap or NOx adsorber - Selective Catalytic Reduction System Diesel Oxidation Catalyst - Diesel particulate filter – Exhaust Gas Sensor Crankcase ventilation system Fuel System Air Handling and Turbocharger - Boost pressure control system - EGR Engine misfire – Idle Speed ControlSystem

#### Performance Requirements:

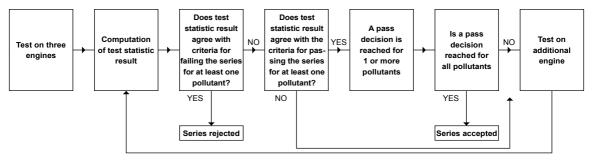
If WHTC GTR is used for certification purpose, the world harmonized OBD test cycle applies. Relevant regional OTL's have to be applicable accordingly. Harmonized OBD performance requirements will evolve with the harmonization of the test cycles, the emission limits and the process for calculating the OTL's

#### WWH-OBD GTR Harmonization Steps

|                                | Step 1                          | Step 2                | Step 3     |
|--------------------------------|---------------------------------|-----------------------|------------|
| Test cycles<br>(emissions/OBD) | Non harmonized<br>or harmonized | Harmonized            | Harmonized |
| Emissions Limits               | Non harmonized                  | Non harmonized        | Harmonized |
| OTL's calculation<br>process   | Non harmonized                  | Harmonized            | Harmonized |
| OTL's                          | Regionally defined              | Regionally calculated | Harmonized |

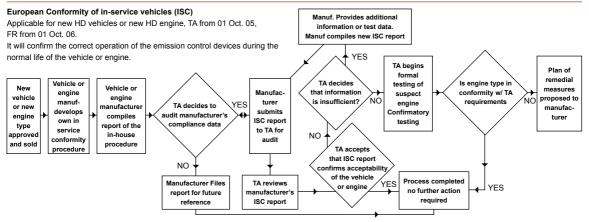


# **PRODUCTION CONFORMITY TESTING**


### EU Procedure

The tests are carried out on newly manufactured engines.

At the request of manufacturer, tests may be carried out on engines which have been run-in up to a max of 100 hours


Tests to be conducted on ESC / ELR or on ETC as defined for T.A.

Tests may be conducted with commercial fuel. At the manufacturer's request, the reference fuel may be used





# IN SERVICE CONFORMITY TESTING

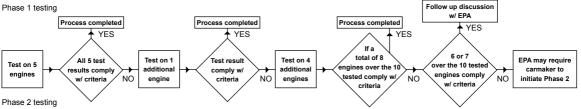




# In SERVICE CONFORMITY TESTING

#### US In use testing

Applicable to HD > 8500 lbs


HC, CO and NOx emission from 2005

PM emissions from 2006

Based on families selected by EPA: - Up to 25% of engine families/year

- Every 4 years period, max average number of engine families certified over that 4 years period

The average emissions for each pollutant must remain at or below the NTE threshold



For any reason, carmakers can be requested to test 10 additional engines.

EPA may select a certain subset of the engine family, force specific test conditions, define a period when testing and reporting have to be done.



# In SERVICE CONFORMITY TESTING

#### CARB Proposal for in-use conformity

- All HD With GVW > 14.000 lbs (6.350 kg) fuelled by diesel or alternative diesel but not NG
- Compliance with Best Available Control Technology (BACT)
- Phase 1: phase-in: 2010-2013
  - + NOx emission: max 2007 NOx emission limit
  - + all vehicles in the fleet to be equipped with verified diesel emissions control systems for PM
- Phase 2: phase-in: 2017-2021
  - + Max NOx emission similar to 2010 emissions standards
  - + PM: any vehicle equipped with highest level of PM control system

# Many thanks to the people around the world who helped to put this book together!

The information contained in this booklet is general in nature. Although Delphi believes the information provided is accurate as of its date of publication, the applicable laws and regulations in this area are complex and subject to change, and Delphi makes no representation or warranty regarding the information and assumes no obligation to update or revise this information. Please consult the full text of all applicable government laws, rules and regulations prior to taking any action in respect of the matters described in this booklet.



Innovation for the Real World



# REFERENCE TEST FUELS EUROPE

#### EU - Diesel reference fuel Dir 98/70/EC as amended by Dir 2002/80/EC\*

| Parameter                      | Unit     | Limits                  |
|--------------------------------|----------|-------------------------|
| Cetane                         | -        | 52-54                   |
| Density at 15°C                | kg/m³    | 833-837                 |
| Distillation T50               | °C       | ≥ 245                   |
| Т95                            | °C       | 345-350                 |
| FBP                            | °C       | ≤ 370                   |
| Flash point                    | °C       | ≥ 55                    |
| CFPP                           | °C       | ≤ -5                    |
| Viscosity at 40°C              | mm²/s    | 2.5 - 3.5 <sup>1)</sup> |
| Polycyclic aromatics           | % m/m    | 3.0 - 6.0               |
| Sulfur                         | ppm      | ≤ 300 <sup>2)</sup>     |
| Copper Corrosion               | -        | ≤ 1                     |
| Conradson C residue (10% DR)   | % m/m    | ≤ 0.2                   |
| Ash content                    | % m/m    | ≤ 0.01                  |
| Water content                  | % m/m    | ≤ 0.02                  |
| Neutralisation (strong acid) # | mg kOH/g | ≤ 0.02                  |
| Oxidation stability            | mg/ml    | ≤ 0.025                 |
| FAME                           | max §    | 5% vol                  |

#### Ethanol for diesel engines (ISO 4259)

| Parameter                      | Unit               | Limits   |
|--------------------------------|--------------------|----------|
| Alcohol, mass                  | % mass             | ≥ 92,4   |
| Other alcohol than ethanol     | % mass             | ≤ 2      |
| Density at 15°C                | kg/m <sup>3</sup>  | 795-815  |
| Ash content                    | % mass             | ≤ 0,001  |
| Flash point                    | °C                 | 10       |
| Acidity (as acetic acid)       | % mass             | ≤ 0,0025 |
| Neutralisation # (strong acid) | KOH mg/l           | ≤1       |
| Colour                         | According to scale | ≤ 10     |
| Dry residue at 100°C           | mg/km              | ≤ 15     |
| Water content                  | % mass             | ≤ 6.5    |
| Aldehydes (as acetic acid)     | % mass             | ≤ 0,0025 |
| Sulfur                         | ppm                | ≤ 10     |
| Esters (as ethylacetate)       | % mass             | ≤ 0.1    |

 $^{()}$  From EURO IV: 2.3 – 3.3  $^{(2)}$  Mandatory diesel Sulfur level for EURO IV:  $\leq$  10ppm NB: Market diesel fuel: from 01 Jan 2009: Sulfur  $\leq$  10 ppm

\* Dir 98/70 amendment adopted by EU Parliament on 17 Dec 08

(to be endorsed by EU Council): Max FAME: 7%; Polycyclic aromatics: Max 8%

- New diesel quality with FAME > 7%, with information on biofuel content allowed

- Countries w/ severe winter conditions: possibility of max distillation T10: 180°C

# REFERENCE TEST FUELS EUROPE

| Reference Fuels | Characteristics       | Units  | Basis | Limits      |
|-----------------|-----------------------|--------|-------|-------------|
|                 | Methane               | -      | 87    | 84 - 89     |
| 0               | Ethane                | -      | 13    | 11-15       |
| G <sub>R</sub>  | Balance <sup>1)</sup> | % mole | -     | ≤ 1         |
|                 | Sulfur                | ppm    | -     | ≤ 10        |
|                 | Methane               | -      | 92,5  | 91,5 - 93,5 |
| C               | Balance 2)            | % mole | -     | ≤ 1         |
| G <sub>23</sub> | N <sub>2</sub>        | -      | 7,5   | 6,5 - 8,5   |
|                 | Sulfur                | ppm    | -     | ≤ 10        |
|                 | Methane               | -      | 86    | 84 - 88     |
| C               | Balance 2)            | % mole | -     | ≤ 1         |
| G <sub>25</sub> | N <sub>2</sub>        | -      | 14    | 12 - 16     |
|                 | Sulfur                | ppm    | -     | ≤ 10        |

| Natural | Gas | (NG) |
|---------|-----|------|
|---------|-----|------|

### Liquefied Petroleum Gas (LPG)

| Parameter                          | Units  | Limits Fuel A | Limits Fuel B |
|------------------------------------|--------|---------------|---------------|
| Motor octane #                     | -      | ≥ 92,5        | ≥ 92,5        |
| C <sub>3</sub> – content           | % vol  | 48 - 52       | 83 - 87       |
| C <sub>4</sub> – content           | % vol  | 48 - 52       | 13 - 17       |
| < C <sub>3</sub> ,< C <sub>4</sub> | % vol  | ≤ 2           | ≤ 2           |
| Olefins                            | % vol  | ≤ 12          | ≤ 14          |
| Evaporation residue                | ppm    | ≤ 50          | ≤ 50          |
| Sulfur 1)                          | ppm    | ≤ 50          | ≤ 50          |
| Hydrogen Sulphide                  | -      | None          | None          |
| Copper strip corrosion             | Rating | Class 1       | Class 1       |
| Water at 0°C                       | -      | Free          | Free          |

<sup>1)</sup> From EURO IV, V  $\leq$  10 ppm

1) Inerts + C2+

<sup>2)</sup> Inerts ( $\neq$  from N<sub>2</sub>) + C<sub>2</sub> + C<sub>2+</sub>

European market fuels are available in two ranges:

The H range, whose extreme reference fuels are  $\rm G_{R}$  and  $\rm G_{23}$ 

The L range, whose extreme reference fuels are  $\rm G_{_{23}}$  and  $\rm G_{_{25}}$ 





### **REFERENCE TEST FUELS EUROPE - NRMM**

| Parameter         | Unit              | Stag | je I/II | Test Method         |
|-------------------|-------------------|------|---------|---------------------|
| raianietei        | Unit              | Min  | Max     | Test Method         |
| Cetane Number     | -                 | 45.0 | 50.0    | EN-ISO 5165         |
| Density at 15°C   | kg/m <sup>3</sup> | 835  | 845     | ISO 3675/ASTM D4052 |
| Distillation T95  | °C                | -    | 370     | EN-ISO 3405         |
| Viscosity at 40°C | mm²/s             | 2.5  | 3.5     | EN-ISO 3104         |
| Sulfur content    | % mass            | 0.1  | 0.2     | ISO 8754, EN 24260  |

NRMM EU Diesel Reference Fuel (CEC RF-75-T-96)

Stage III A: Sulfur: max 300 ppm Stage III B and IV: Sulfur: max 10 ppm

Market diesel fuel for NRMM applications: Dir 98/70 amendment adopted by EU

Parliament on 17 Dec 08 (to be endorsed by EU Council)

Sulfur max 1000 ppm from 01 Jan 08

Sulfur max 10 ppm from 01 Jan 11

Possible derogation: Sulfur 1000 ppm until 31 Dec 11

Sulfur 20 ppm from Jan 11

#### NRMM EU Gasoline Reference Fuel (CEC RF-75-T-96)

| Parameter             | Unit              | Stage I/II |      | Test Method  |
|-----------------------|-------------------|------------|------|--------------|
| Falameter             | Unit              | Min        | Max  | Test Method  |
| RON                   | -                 | 95         | -    | EN 25164     |
| MON                   | -                 | 85         | -    | EN 25163     |
| Density at 15°C       | kg/m <sup>3</sup> | 748        | 762  | ISO 3675     |
| RVP                   | kPa               | 56.0       | 60.0 | EN 12        |
| Sulfur                | ppm               | -          | 100  | EN-ISO 14596 |
| IBP                   | °C                | 24         | 40   | EN-ISO 3405  |
| Distillation at 100°C | % vol             | 49.0       | 57.0 | EN-ISO 3405  |
| Distillation at 150°C | % vol             | 81.0       | 87.0 | EN-ISO 3405  |
| FBP                   | °C                | 190        | 215  | EN-ISO 3405  |

The fuel for 2-stroke engines is a blend of lubricant oil and petrol





### **REFERENCE FUELS US**

### EPA / CARB - Certification Diesel Reference Fuel

|                                  |                      | 1994-2006         | MY vehicles       | 2007 and later MY vehicles |                        | ehicles           |                                     |
|----------------------------------|----------------------|-------------------|-------------------|----------------------------|------------------------|-------------------|-------------------------------------|
| Fuel Property                    | Unit                 | Federal           | California        | Federal sp                 | ecifications           | California        | Test 1)                             |
|                                  |                      | Federal           | California        | 1-D <sup>2)</sup>          | 2-D                    | Specifications    |                                     |
| Cetane Number (natural)          | -                    | 42-50             | 47-55             | 40-54                      | 40-50                  | 47-55             | D-613                               |
| Distillation Range               | °F (°C)              |                   |                   |                            |                        |                   | D-86; 13 CCR section 2282 (g) (3)   |
| Initial Boiling Point            |                      | 340-400 (171-204) | 340-420 (171-216) | 330-390 (166-199)          | 340-400 (171-204)      | 340-420 (171-216) |                                     |
| 10% Point                        |                      | 400-460 (204-238) | 400-490 (204-254) | 370-430 (188-221)          | 400-460 (204-238)      | 400-490 (204-254) |                                     |
| 50% Point                        |                      | 470-540 (243-282) | 470-560 (243-293) | 410-480 (210-249)          | 470-540 (243-282)      | 470-560 (243-293) |                                     |
| 90% Point                        |                      | 560-630 (293-332) | 550-610 (288-321) | 460-520 (238-271)          | 560-630 (293-332)      | 550-610 (288-321) |                                     |
| End Point                        |                      | 610-690 (321-366) | 580-660 (304-349) | 500-560 (260-293)          | 610-690 (321-366)      | 580-660 (304-349) |                                     |
| API Gravity                      | -                    | 32-37             | 33-39             | 40-44                      | 32-37                  | 33-39             | D-287                               |
| Total Sulfur                     | ppm (wt)             | 0.03-0.05 % wt    | 0.01-0.05 % wt    | 7-15                       | 7-15                   | 7-15              | D-2622; 13 CCR section 2282 (g) (3) |
| Nitrogen Content (max.)          | ppm (wt)             | -                 | 100-500           | -                          | -                      | 100-500           | 13 CCR section 2282 (g) (3)         |
| Total Aromatic Hydrocarbons      | % (vol)              | 27 (min)          | 8-12              | 8 (min) <sup>3)</sup>      | 27 (min) <sup>3)</sup> | 8-12              | D-1319; 13 CCR section 2282 (g) (3) |
| Polycyclic Aromatic Hydrocarbons | % (wt)               | -                 | 1.4 (max)         | -                          | -                      | 1.4 (max)         |                                     |
| Flashpoint (min.)                | °F (°C)              | 130 (54)          | 130 (54)          | 120 (49)                   | 130 (54)               | 130 (54)          | D-93                                |
| Viscosity @ 40 °F (4°C)          | Mm <sup>2</sup> /sec | 2.0-3.2           | 2.0-4.1           | 1.6-2.0                    | 2.0-3.2                | 2.0-4.1           | D-445                               |

<sup>1)</sup> ASTM standards and/of California Title 13, CCR procedures

<sup>3)</sup> remainder shall be paraffins, naphthenes, and olefins

<sup>2)</sup> Basic certification fuel is the grade 2-D diesel. Grade 1-D is allowed only if the engine manufacturer demonstrates that this fuel will be the predominant in-use fuel

#### EPA / CARB – Diesel Reference Fuel for Non-Road Diesel Engines

|                              |                      | Emission          | Regulation           |           |
|------------------------------|----------------------|-------------------|----------------------|-----------|
| Fuel Property                | Unit                 | Tier 1-3          | Tier 4               | ASTM Test |
| Cetane Number (natural)      |                      | 40-48             | 40-50                | D-613     |
| Cetane Index                 |                      |                   | 40-50                | D-976     |
| Distillation Range           | °F (°C)              |                   |                      |           |
| Initial Boiling Point        |                      | 340-400 (171-204) | 340-400 (171-204)    |           |
| 10% Point                    |                      | 400-460 (204-238) | 400-460 (204-238)    |           |
| 50% Point                    |                      | 470-540 (243-282) | 470-540 (243-282)    | D-86      |
| 90% Point                    |                      | 560-630 (293-332) | 560-630 (293-332)    |           |
| End Point                    |                      | 610-690 (321-366) | 610-690 (321-366)    |           |
| API Gravity                  |                      | 32-37             | 32-37                | D-287     |
| Total Sulfur 3)              | ppm (wt.)            | 300-4000          | 7-4000 <sup>2)</sup> | D-2622    |
| Aromatic Hydrocarbons (min.) | % (vol.)             | 8 (min.) 1)       | 27 (min.) 1)         | D-5186    |
| Flashpoint (min.)            | °F (°C)              | 130 (54)          | 130 (54)             | D-93      |
| Viscosity @ 38°F (3°C)       | mm <sup>2</sup> /sec | 2.0 - 3.2         | 2.0 - 3.2            | D-445     |

<sup>1)</sup> remainder shall be paraffins, naphthenes, and olefins

<sup>2)</sup> Three fuel grades: Ultra Low Sulfur (7-15 ppm); Low Sulfur (300-500 ppm); High Sulfur (2000-4000 ppm).

 The general EPA position has been that the actual sulfur content in the certification fuel should reflect the fuel quality to be used in the field.

With the evolution of non-road fuel quality in the US market in mind, EPA adopted the following regulatory provisions for sulfur content in test fuels

Sulfur  $\leq$  2.000 ppm (0.2%) for Tier 1-3 thru MY2007 300-500 ppm sulfur for MY 2008-2010 engines 7-15 ppm sulfur for Tier 4 engines from 2011

The following provisions apply to sulfur content in certification fuels in the transitional period (2006-2010) and are at the certifying manufacturer's option;

The manufacturer must help ensure that the specified Fuel is used in the field

300-500 ppm for some MY 2006-2007 engines ≥ 100hp

7-15 ppm for MY 2007-2010 engines that use sulfur sensitive technology

7-15 ppm for MY 2008-2010 engines < 75 hp

### **REFERENCE FUELS US / Japan**

#### EPA / CARB – Gasoline Reference Fuel

| Parameter                        | Unit               | EPA / CARB specs |
|----------------------------------|--------------------|------------------|
| MON/RON                          | -                  | 82/87            |
| (MON + RON ) / 2, min            | 93                 | 91               |
| RVP (kPA) @ 7,8 °C <sup>2)</sup> | 55,2-63,4          | 46,8- 48,3       |
| FBP (°F)                         | 415                | 390              |
| T10 (°F)                         | 120-135            | 130-150          |
| T50 (°F)                         | 200-230            | 203-220          |
| T90 (°F)                         | 300-325            | 295-330          |
| Lead (g/l) Max                   | 0,013              | 0                |
| Sulfur (ppm) Max                 | 1000 <sup>1)</sup> | 30-40            |
| Benzene (% vol) Max              | -                  | 0,8-1            |
| Aromatics (% vol) Max            | 35                 | 22-35            |
| Olefins (% vol) Max              | 10                 | 4-10             |

CARB Phase 3 uses ethanol as an oxygenate <sup>1)</sup> EPA: Sulfur reduced to 15 - 80 ppm. 100% in 2006 <sup>2)</sup> RVP for altitude testing: 7.6-8.0 psi or 52-55 kPa

#### Japanese Diesel Reference Fuel

The properties of this fuel are similar to the JIS #2 market diesel.

| Parameter                  | Unit  | Lir | nit | Test      |  |
|----------------------------|-------|-----|-----|-----------|--|
| Falameter                  | Mi    |     | Max | lest      |  |
| Cetane Number              | -     | 45  | -   | JIS K2280 |  |
| Sulfur                     | ppm   | -   | 50  | JIS K2541 |  |
| Viscosity @ 40°C           | mm²/s | 2.5 | -   | JIS K2283 |  |
| Flash Point                | °C    | 50  | -   | JIS K2265 |  |
| Distillation, 90% v/v rec. | °C    | -   | 350 | JIS K2254 |  |

Sulfur: 10 ppm effective from 2007

Five grades of diesel fuels: special n° 1, n° 1, n° 2, n° 3 and special n° 3 Highway vehicles (PC, trucks and buses) use n° 2 diesel fuel Special n° 3 is used in winter in cold climate areas Most of off-road equipment use n° 2 diesel fuel Some of them use n° 1 category (Sulfur 0.5%)



# 1) C.I. Engines

### Euro Stage I and Stage II

Dir 97/68/EC, amended by Dir 2002/88/EC

Test cycle: NRSC (see page 77)

ISO 8178-C1 for C.I. engines operated under intermittent speed

ISO 8178-D2 for C.I. engines operated under constant speed

| Cat   | Net Power P (kW)               | CO (g/kWh) | HC (g/kWh) | NOx (g/kWh) | PM (g/kWh) | TA                       | NR                       |  |
|-------|--------------------------------|------------|------------|-------------|------------|--------------------------|--------------------------|--|
| Stage | Stage I (engine out emissions) |            |            |             |            |                          |                          |  |
| A     | 130 - 560                      | 5,0        | 1,3        | 9,2         | 0,54       | 01 Jul. 98               | 01 Jan. 99               |  |
| в     | 75 - 130                       | 5,0        | 1,3        | 9,2         | 0,70       | 01 Jul. 98 1)            | 01 Jan. 992)             |  |
| С     | 37 - 75                        | 6,5        | 1,3        | 9,2         | 0,85       | 01 Jul. 98 <sup>1)</sup> | 01 Apr. 99 <sup>2)</sup> |  |
| Stage | II <sup>4</sup> )              |            |            | •           |            |                          |                          |  |
| E     | 130 - 560                      | 3,5        | 1,0        | 6,0         | 0,2        | 01 Jan. 01               | 01 Jul. 02               |  |
| F     | 75 - 130                       | 5,0        | 1,0        | 6,0         | 0,3        | 01 Jan. 02               | 01 Jul. 03               |  |
| G     | 37 - 75                        | 5,0        | 1,3        | 7,0         | 0,4        | 01 Jan. 03               | 01 Jan. 04               |  |
| D     | 18 - 37                        | 5,5        | 1,5        | 8,0         | 0,8        | 01 Jan. 01 3)            | 01 Jan. 023)             |  |

<sup>1)</sup> 01 Jan. 01 for agricultural and forestry tractors

<sup>2)</sup> 01 Jul. 01 for agricultural and forestry tractors

<sup>3)</sup> 1 year later for agricultural applications and forestry tractors

<sup>4)</sup> For constant speed engines, implementation date: 01 Jan. 07



Euro Stage III and IV Dir 97/68/EC as amended by Dir 2004/26/EC and Dir 2006/105/EC

Test cycle (See pages 77-79)

NRSC: variable speed engine: Stage III A, Stage III B and Stage IV (gaseous pollutants): ISO 8178-4 C1; constant speed engines: ISO 8178-4 D2

NRTC: variable speed engines: Stage III B and Stage IV: particulate emissions (Manufacturers may elect to use for Stage III A, Stage III B and Stage IV)

| Category                   | Net Power (kW) | CO (g/kWh) | HC (g/kWh) | NOx (g/kWh) | PM (g/kWh) | TA         | NR         |  |
|----------------------------|----------------|------------|------------|-------------|------------|------------|------------|--|
| Stage III A <sup>1</sup> ) |                |            |            |             |            |            |            |  |
| Н                          | 130 ≤ P < 560  | 3.5        | NOx +      | HC: 4.0     | 0.2        | 30 Jun. 05 | 31 Dec. 05 |  |
| I                          | 75 ≤ P < 130   | 5.0        | NOx +      | HC: 4.0     | 0.3        | 31 Dec. 05 | 31 Dec. 06 |  |
| J                          | 37 ≤ P < 75    | 5.0        | NOx +      | HC: 4.7     | 0.4        | 31 Dec. 06 | 31 Dec. 07 |  |
| К                          | 19 ≤ P < 37    | 5.5        | NOx +      | HC: 7.5     | 0.6        | 31 Dec. 05 | 31 Dec. 06 |  |
| Stage III B                |                |            |            |             |            |            |            |  |
| L                          | 130 ≤ P < 560  | 3.5        | 0.19       | 2.0         | 0.025      | 31 Dec. 09 | 31 Dec. 10 |  |
| М                          | 75 ≤ P < 130   | 5.0        | 0.19       | 3.3         | 0.025      | 31 Dec. 10 | 31 Dec. 11 |  |
| N                          | 56 ≤ P < 75    | 5.0        | 0.19       | 3.3         | 0.025      | 31 Dec. 10 | 31 Dec. 11 |  |
| Р                          | 37 ≤ P < 56    | 5.0        | NOx +      | HC: 4.7     | 0.025      | 31 Dec. 11 | 31 Dec. 12 |  |
| Stage IV                   | Stage IV       |            |            |             |            |            |            |  |
| Q                          | 130 ≤ P < 560  | 3.5        | 0.19       | 0.4         | 0.025      | 31 Dec. 12 | 31 Dec. 13 |  |
| R                          | 56 ≤ P < 130   | 5.0        | 0.19       | 0.4         | 0.025      | 30 Sep. 13 | 30 Sep. 14 |  |

<sup>1)</sup> Other than constant speed engines



Constant speed engines implementation dates

| Category | TA         | NR         |
|----------|------------|------------|
| Н        | 31 Dec. 09 | 31 Dec. 10 |
| 1        | 31 Dec. 09 | 31 Dec. 10 |
| J        | 31 Dec. 10 | 31 Dec. 11 |
| К        | 31 Dec. 09 | 31 Dec. 10 |

Deterioration Factors (DF's) and Emission Durability Period (EDP)

- Additive DF's are applied for each pollutant for C.I. engines not using any aftertreatment device.
- Multiplicative DF's are applied for each pollutant for C.I. engines using an aftertreatment device.

DF's are determined by manufacturers in accordance with a specific test procedure which must be representative of use and have duration of at least 1/4 EDP EDP:

For C.I. Stage III A, III B and IV engines

| Category                             | EDP (hours) |
|--------------------------------------|-------------|
| ≤ 37 kW (constant speed engines)     | 3000        |
| ≤ 37 kW (not constant speed engines) | 5000        |
| > 37 kW                              | 8000        |

# 2) Agricultural and Forestry Tractors

Dir 74/150/EC as amended by Dir 2000/25/EC and by Dir 2005/13/EC Dir 97/68/EC, as amended by Dir 2002/88/EC and Dir 2004/26/EC Engine categories, test cycles and emissions limits: see page 56, C.I. engines Implementation Dates

| Stage       | Cat.    | Engine Power EP (kw) | TA         | NR               |
|-------------|---------|----------------------|------------|------------------|
| Stage I     | С       | 130 ≤ P < 560        | 01 Jul. 98 | 01 Jul. 01       |
|             | В       | 75 ≤ P < 130         | 01 Jan. 01 | 01 Jul. 01       |
| Stage II    | D       | 18 ≤ P < 37          | 01 Jan. 01 | 01 Jan. 02       |
|             | G       | 37 ≤ P < 75          | 01 Jan. 03 | 01 Jan. 04       |
|             | F       | 75 ≤ P < 130         | 01 Jan. 02 | 01 Jul. 03       |
|             | E       | 130 ≤ P < 560        | 01 Jan. 01 | 01 Jul. 02       |
| Stage III A | H, I    | 75 ≤ P < 560         | 31 Dec. 05 | H: 31 Dec. 05    |
|             | and K   | 19 ≤ P < 37          | 51 DCC. 05 | I, K: 31 Dec. 06 |
|             | J       | 37 ≤ P < 75          | 31 Dec. 06 | 31 Dec. 07       |
| Stage III B | L       | 130 ≤ P < 560        | 31 Dec. 09 | 31 Dec. 10       |
|             | M and N | 56 ≤ P < 130         | 31 Dec. 10 | 31 Dec. 11       |
|             | Р       | 37 ≤ P < 56          | 31 Dec. 11 | 31 Dec. 12       |
| Stage IV    | Q       | 130 ≤ P < 560        | 31 Dec. 12 | 31 Dec. 13       |
|             | R       | 56 ≤ P < 130         | 31 Dec. 13 | 30 Sep. 14       |

NB: For engines of categories H to R, the NR dates can be postponed for 2 years for engines with production dates prior to the said date.

#### **Opacity for Exhaust Gases**

Dir 77/537/EEC as amended by Dir 97/54/EC

Application: tractors equipped with wheels or endless tracks, having at least 2 axles and with 6 km/h < max design speed  $\leq$  40 km/h

Two tests are required:

1) Test at steady speed

6 measurements shall be made at engine speeds spaced out uniformly between that corresponding to max power and the higher of the following two engine speeds: 55% of the engine speed corresponding to the maximum power and 1000 rpm The engine shall be running under 80% of the maximum load. The light absorption coefficient of the exhaust gases shall be measured with an opacimeter. For each measuring point, the smoke measured should not exceed the limit values (SL) specified in the directive, which are a function of the air flow rate. The value selected will be measured (SM) nearest the relevant limit value.

#### 2) Test under free acceleration

With warm engine from the idle to maximum speed giving an average (XM) of 4 consecutive non-dispersed values.

The free acceleration smoke limit is the lower of the two values calculated below XL1= (SL/SM) \* XM and XL2 = XM + 0.5

#### Amendment proposal to Dir 2000/25/EC and Dir 2005/13/EC

- Stage IIIB and IV implementation should be delayed by 5 years for tractors of categories T2, C2 and T4.1

Justification for delay to be reviewed by 31 Jan 12

- T2: wheeled tractor w/ min track width < 1150 mm, unladen mass
  - > 600 kg and ground clearance ≤ 600 mm
- C2: track laying tractor equivalent to T2
- T4.1: high clearance tractor (vineyard tractor)

Scope extension to all categories of tractors, trailers and towed machinery





# Medium duty. Advanced design. Robust performance.

Delphi's Multec® Medium Duty Diesel Common Rail System offers impressive simplification of fuel and control systems and up to 2,000 bar system pressure capability. Its solenoid injector technology is designed to deliver precise fuel quantities over the life of the engine for cost effective, robust emissions and acoustics performance. The Delphi Multec® Medium Duty Common Rail System is ideally suited for one- to six-cylinder medium duty truck and off-highway programs.

To find out more, visit: www.delphi.com/manufacturers/cv/powertrain/md\_dcr/



Innovation for the Real World



### 3) SI Engines

Dir 2002/88/EC is amending Dir 97/68/EC by extending its scope to small spark ignition engines ( $\leq$  19kW).

### Classification

| Main Class S: small engines with a net power ≤ 19 kW |                    |               |                        |  |  |  |  |
|------------------------------------------------------|--------------------|---------------|------------------------|--|--|--|--|
|                                                      | SH                 |               | SN                     |  |  |  |  |
| Engines for                                          | handheld machinery | Engines for r | non handheld machinery |  |  |  |  |
| Category                                             | Displacement (cc)  | Category      | Displacement (cc)      |  |  |  |  |
| SH: 1                                                | < 20               | SN: 1         | < 66                   |  |  |  |  |
| SH: 2                                                | 20 ≤ D < 50        | SN: 2         | 66 ≤ D < 100           |  |  |  |  |
| SH: 3                                                | ≥ 50               | SN: 3         | 100 ≤ D < 225          |  |  |  |  |
|                                                      |                    | SN: 4         | ≥ 225                  |  |  |  |  |

### Emissions Limits

|        |     | Sta     | ge I          |            | Stage II |        |            |
|--------|-----|---------|---------------|------------|----------|--------|------------|
| Engine | со  | HC      | NOx           | ТА         | со       | HC+NOx | ТА         |
| Class  |     | (g/kWh) |               | IA         | (g/kWh)  |        |            |
| SH: 1  | 805 | 295     | 5.36          | 11 Aug. 04 | 805      | 50     | 01 Aug. 07 |
| SH: 2  | 805 | 241     | 5.36          | 11 Aug. 04 | 805      | 50     | 01 Aug. 07 |
| SH: 3  | 603 | 161     | 5.36          | 11 Aug. 04 | 603      | 72     | 01 Aug. 08 |
| SN: 1  | 519 | HC + NC | )x = 50       | 11 Aug. 04 | 610      | 50     | 01 Aug. 04 |
| SN: 2  | 519 | HC + NC | HC + NOx = 40 |            | 610      | 40     | 01 Aug. 04 |
| SN: 3  | 519 | HC + NC | )x = 16.1     | 11 Aug. 04 | 610      | 16.1   | 01 Aug. 07 |
| SN: 4  | 519 | HC + NC | )x = 13.4     | 11 Aug. 04 | 610      | 12.1   | 01 Aug. 06 |

Max limit NOx (Stage II) for all engines: 10g/kWh

Stage III and IV: see page 56 (C.I. Stage III/IV)

Test cycles (See pages 77-79)

ISO 8178-4 to be applied

Cycle D: engines with constant speed and intermittent load

Cycle G1: non-handheld intermediate speed machinery

Cycle G2: non-handheld rated speed machinery

Cycle G3: handheld machinery



#### Emission Durability Period (EDP) and Deterioration Factors (DF's)

1) DF's

Manufacturers can get an assigned DF or calculate a DF, for each regulated pollutant for all stage 2 engine families. These DF's will be used for TA and COP testing.

### 2) EDP (in hours)

EDP category shall be the category which most closely approaches the expected useful lives of the equipment into which the engines will be installed.

| Engine Class | 1   | 2   | 3    |
|--------------|-----|-----|------|
| SH: 1        | 50  | 125 | 300  |
| SH: 2        | 50  | 125 | 300  |
| SH: 3        | 50  | 125 | 300  |
| SN: 1        | 50  | 125 | 300  |
| SN: 2        | 125 | 250 | 500  |
| SN: 3        | 125 | 250 | 500  |
| SN: 4        | 250 | 500 | 1000 |

#### Amendment proposal to NRMM Directive under discussion

- Exemptions in stage II for top handle machine tree service chainsaw and hand-held hedge trimmer until 01 Aug 14
- Test cycles: Stage I, II, IIIA: NRSC only Stage IIIB, IV: NRSC and NRTC
- Test procedure including cold/hot composite test sequence
- NOx control: keep NOx emissions within desirable limits
   2 different proposals (stage IIIB and stage IV)
   Experience based on HD directive (see pages 11 and 41)
   Technology neutral
- Definition of reference speed for NRTC speed denormalisation and NRSC 8-mode test
- Remaining issues for further discussions:
  - + Recital to UN-ECE NRMM-GTR (control area, reference fuel properties...)
  - + Defeat device and cycle by-pass provisions
  - + Deterioration factors; aftertreatment adjustment factors
  - + Regularisation of field test practices
  - + Test cycle and emission limits for engines > 560 kW
  - + Cold/hot start weight factors
  - + Alternative type approval provisions



# Off-Road C.I. engines

40 CFR part 89, covering mobile non road diesel engines, used in construction, agricultural and industrial applications.

US Non-Road regulations are in the imperial system of units, all standards expressed in g/bhp.h (metric equivalent are shown in brackets).

### EPA 96 - Tier 1 Initial schedule

Applied to engines between 175 bhp (130 kW) and 750 bhp (560 kW). Other engine categories have been added later. Test cycle: ISO 8178

| Engine Power   |               | Model | NOx             | HC        | со  | PM   |
|----------------|---------------|-------|-----------------|-----------|-----|------|
| hp             | kW            | Year  | g/bhp.h (g/kWh) |           |     |      |
| 175 ≤ hp < 750 | 130 ≤ P < 560 | 1996  | 6.9 (9.2)       | 1.0 (1.3) | 8.5 | 0.40 |
| 100 ≤ hp < 175 | 75 ≤ P < 130  | 1997  | 6.9 (9.2)       | -         | -   | -    |
| 50 ≤ hp < 100  | 37 ≤ P < 75   | 1998  | 6.9 (9.2)       | -         | -   | -    |
| hp ≥ 750       | P ≥ 560       | 2000  | 6.9 (9.2)       | 1.0 (1.3) | 8.5 | 0.40 |

Smoke: 40 CFR part 86 specifies opacity test measurements w/ limit values A (acceleration): 20% opacity; B (lugging mode): 15%; C (Peak): 50% EPA 98 - Final rule – Tier 1 – Tier 2 – Tier 3 Broadly similar to EU standards

| Tier      | Engine  | Power       | Model   |             | g/bhp.h    | (g/kWh)   |                            |
|-----------|---------|-------------|---------|-------------|------------|-----------|----------------------------|
|           | HP      | kW          | Year    | NMHC+NOx    | NOx        | CO        | PM                         |
| 1         |         |             | 2000    | 7.8 (10.5)  | -          | 6.0 (8.0) | 0.75 (1.0)                 |
| 2         | < 11    | < 8         | 2005    | 5.6 (7.5)   | -          | 6.0 (8.0) | 0.6 (0.8)                  |
| 4         |         |             | 2008-14 | 5.6 (7.5)   | -          | 6.0 (8.0) | 0.3 (0.4) 1)               |
| 1         |         |             | 2000    | 7.1 (9.5)   | -          | 4.9 (6.6) | 0.6 (0.8)                  |
| 2         | 11-25   | 8-19        | 2005    | 5.6 (7.5)   | -          | 6.0 (8.0) | 0.6 (0.8)                  |
| 4         |         |             | 2008-14 | 5.6 (7.5)   | -          | 6.0 (8.0) | 0.3 (0.4)                  |
| 1         |         |             | 1999    | 7.1 (9.5)   | -          | 4.1 (5.5) | 0.6 (0.8)                  |
| 2         | 25-50   | 19-37       | 2004    | 5.6 (7.5)   | -          | 4.1 (5.5) | 0.45 (0.6)                 |
| Interim 4 | 20-00   | 19-37       | 2008-12 | 5.6 (7.5)   | -          | 4.1 (5.5) | 0.22 (0.3)                 |
| Final 4   |         |             | 2013-14 | 3.5 (4.7)   | -          | 4.1 (5.5) | 0.22 (0.3)                 |
| 1         |         |             | 1998    | -           | -          | 6.9 (9.2) | -                          |
| 2         | 50-75   | 50-75 37-56 | 2004    | 5.6 (7.5)   | -          | 3.7 (5.0) | 0.3 (0.4)                  |
| Interim 4 |         |             | 2008-12 | 3.5 (4.7)   | -          | 3.7 (5.0) | 0.22 (0.3) <sup>2)</sup>   |
| Final 4   |         |             | 2013-14 | 3.5 (4.7)   | -          | 3.7 (5.0) | 0.02 (0.03) 2)             |
| 1         |         |             | 1998    | -           | 6.9 (9.2)  | -         | -                          |
| 2         | 75-100  | 56-75       | 2004    | 5.6 (7.5)   | -          | 3.7 (5.0) | 0.3 (0.4)                  |
| 3         | 73-100  | 30-73       | 2008    | 3.5 (4.7)   | -          | 3.7 (5.0) | 0.3 (0.4)                  |
| Interim 4 |         |             | 2012-14 | 2.64 (3.54) | 2.5 (3.35) | 3.7 (5.0) | 0.015 (0.20) <sup>3)</sup> |
| 1         |         |             | 1997    | -           | 6.9 (9.2)  | -         | -                          |
| 2         | 100-175 | 56-130      | 2003    | 4.9 (6.6)   | -          | 3.7 (5.0) | 0.22 (0.3)                 |
| 3         | 100-175 | 30-130      | 2007    | 3.0 (4.0)   | -          | 3.7 (5.0) | 0.22 (0.3)                 |
| Interim 4 |         |             | 2012-14 | 2.64 (3.54) | 2.5 (3.35) | 3.7 (5.0) | 0.015 (0.20)3)             |



| Tier      | Engine             | Power   | Model   |             | g/bhp.h    | (g/kWh)    |                           |
|-----------|--------------------|---------|---------|-------------|------------|------------|---------------------------|
|           | HP                 | kW      | Year    | NMHC+NOx    | NOx        | CO         | PM                        |
| 1         |                    |         | 1996    | 7.9 (10.6)  | 6.9 (9.2)  | 8.5 (11.4) | 0.40 (0.54)               |
| 2         | 1                  |         | 2003    | 4.9 (6.6)   | -          | 2.6 (3.5)  | 0.15 (0.20)               |
| 3         | 175-300            | 130-225 | 2006    | 3.0 (4.0)   | -          | 2.6 (3.5)  | 0.15 (0.20)4)             |
| Interim 4 |                    |         | 2011-13 | 1.64 (2.20) | 1.5 (2.0)  | 2.6 (3.5)  | 0.15 (0.20) <sup>3)</sup> |
| Final 4   | 1                  |         | 2014    | 0.44 (0.59) | 0.3 (0.4)  | 2.2 (2.95) | 0.15 (0.20)               |
| 1         |                    |         | 1996    | 7.9 (10.6)  | 6.9 (9.2)  | 8.5 (11.4) | 0.40 (0.54)               |
| 2         |                    |         | 2001    | 4.9 (6.6)   | -          | 2.6 (3.5)  | 0.15 (0.20)               |
| 3         | 300-600            | 225-450 | 2006    | 3.0 (4.0)   | -          | 2.6 (3.5)  | 0.15 (0.20)4)             |
| Interim 4 |                    |         | 2011-13 | 1.64 (2.20) | 1.5 (2.0)  | 2.6 (3.5)  | 0.15 (0.20) <sup>3)</sup> |
| Final 4   |                    |         | 2014    | 0.44 (0.59) | 0.3 (0.4)  | 2.2 (2.95) | 0.15 (0.20)               |
| 1         |                    |         | 1996    | 7.9 (10.6)  | 6.9 (9.2)  | 8.5 (11.4) | 0.40 (0.54)               |
| 2         |                    |         | 2002    | 4.8 (6.4)   | -          | 2.6 (3.5)  | 0.15 (0.20)               |
| 3         | 600-750            | 450-560 | 2006    | 3.0 (4.0)   | -          | 2.6 (3.5)  | 0.15 (0.20)4)             |
| Interim 4 |                    |         | 2011-13 | 1.64 (2.20) | 1.5 (2.0)  | 2.6 (3.5)  | 0.15 (0.20) <sup>3)</sup> |
| Final 4   |                    |         | 2014    | 0.44 (0.59) | 0.3 (0.4)  | 2.2 (2.95) | 0.15 (0.20)               |
| 1         |                    |         | 2000    | 7.9 (10.6)  | 6.9 (9.2)  | 8.5 (11.4) | 0.40 (0.54)               |
| 2         | > 750 5)           | > 560   | 2006    | 4.8 (6.4)   | -          | 2.6 (3.5)  | 0.15 (0.20                |
| Interim 4 |                    |         | 2011-14 | 2.9 (3.9)   | 2.6 (3.5)  | 2.6 (3.5)  | 0.07 (0.09)               |
| 1         | 750-               | 560-    | 2000    | 7.9 (10.6)  | 6.9 (9.2)  | 8.5 (11.4) | 0.40 (0.54)               |
| 2         | 1200 <sup>6)</sup> | 895     | 2006    | 4.8 (6.4)   | -          | 2.6 (3.5)  | 0.15 (0.20)               |
| Interim 4 | 1200               | 000     | 2011-14 | 2.9 (3.9)   | 2.6 (3.5)  | 2.6 (3.5)  | 0.07 (0.09)               |
| 1         |                    |         | 2000    | 7.9 (10.6)  | 6.9 (9.2)  | 8.5 (11.4) | 0.40 (0.54)               |
| 2         | >1200 6)           | > 895   | 2006    | 4.8 (6.4)   | -          | 2.6 (3.5)  | 0.15 (0.20)               |
| Interim 4 |                    |         | 2011-14 | 0.8 (1.07)  | 0.5 (0.67) | 2.6 (3.5)  | 0.07 (0.09)               |

- <sup>1)</sup> The PM std for hand-start, air-cooled, direct-injection engines below 11 hp may Be delayed until 2010 and be set at 0.45 g/bhp-hr
- <sup>2)</sup> Engine families in this power category may alternately meet Tier 3 PM stds (0.30 q/bhp-hr) from 2008-2011 in exchange for introducing final PM stds in 2012
- <sup>3)</sup> The implementation schedule shown is the 3 year alternate NOx approach. Other schedules are available
- <sup>4)</sup> Certain manufacturers have agreed to comply with these stds by 2005
- 5) Mobile machines only
- 6) Generators only

EPA 98 did not establish Tier 3 PM emissions – Tier 2 PM limits carry over Also included: averaging, banking and trading (ABT) of emission credits and NTE "Family Emissions limits" (FEL) for emission averaging. Amended requirements in Sep. 07 to allow Tier 3 phase-in relief in exchange for equivalent loss of Tier 4 flexibility

Federal smoke test (40 CFR part 86, sub part I)

Harmonized smoke test: ISO 8178-9

- A (acceleration) = 20% opacity
- B (lugging Mode) = 15% opacity

C (Peak) = 50% opacity

#### Engine useful life

The emissions standards must be met over the entire useful life of the engine. DF's are applicable to all engines.



| Power Rating             | Rated engine speed                  | Usef  | ul life | Recall<br>Testing period |       |
|--------------------------|-------------------------------------|-------|---------|--------------------------|-------|
| r ower Rating            | Rated engine speed                  | Hours | Years   | Hours                    | Years |
| < 25 hp (< 19 kW)        | all                                 | 3000  | 5       | 2250                     | 4     |
| 25 - 50 hp<br>(19-37 kW) | Constant speed engine<br>≥ 3000 rpm | 3000  | 5       | 2250                     | 4     |
|                          | all others                          | 5000  | 7       | 3750                     | 5     |
| > 50 hp (> 37 kW)        | all                                 | 8000  | 10      | 6000                     | 7     |

#### Blue Sky Series

Manufacturers can voluntary use more stringent emission standards to earn a designation "Blue Sky Series" engines. This is applicable to Tier 1-3 certifications, MY 2004. Blue Sky program eliminated in Tier 4 regulations

| Engine Power |           | NMHC + NOx      | РМ              |
|--------------|-----------|-----------------|-----------------|
| hp           | kW        | g/bhp-h (g/kWh) | g/bhp-h (g/kWh) |
| < 11         | < 8       | 3.4 (4.6)       | 0.36 (0.48)     |
| 11 - 25      | 8 - 19    | 3.4 (4.6)       | 0.36 (0.48)     |
| 25 - 50      | 19 - 37   | 3.4 (4.6)       | 0.27 (0.36)     |
| 50 - 100     | 37 - 75   | 3.5 (4.7)       | 0.18 (0.24)     |
| 100 - 175    | 75 - 130  | 3.0 (4.0)       | 0.13 (0.18)     |
| 175 - 750    | 130 - 560 | 3.0 (4.0)       | 0.09 (0.12)     |
| ≥ 750        | ≥ 560     | 2.8 (3.8)       | 0.09 (0.12)     |

Land-based non-road diesel engines (40 CFR part 89.112) and land-based non-road SI engines > 25 hp (40 CFR part 1048.140)

### Tier 4 (40 CFR Part 1039)

Application after all the transition and phase-in provisions expire, after MY 2014

| Max Engine Power                  | PM     | NOx  | NMHC | NOx+NMHC | CO                |
|-----------------------------------|--------|------|------|----------|-------------------|
| (kW) (g/kWh)                      |        |      |      |          |                   |
| < 19                              | 0.401) | -    | -    | 7.5      | 6.6 <sup>2</sup>  |
| 19 - 56                           | 0.03   | -    | -    | 4.7      | 5.0 <sup>3]</sup> |
| 56 - 130                          | 0.02   | 0.40 | 0.19 | -        | 5.0               |
| 130 - 560                         | 0.02   | 0.40 | 0.19 | -        | 3.5               |
| > 560 (generator sets)            | 0.03   | 0.67 | 0.19 | -        | 3.5               |
| > 560 (all except generator sets) | 0.04   | 3.5  | 0.19 | -        | 3.5               |

<sup>1)</sup> Optional PM standard EP< 8kW: hand-startable, air cooled and DI engines:

0.60g/kWh in 2010, before Tier 2 limits are required

<sup>2)</sup> EP < 8kW: CO: 8.0 g/kWh <sup>3)</sup> EP < 37kW: CO: 5.5 g/kWh

Useful Life: No change from Tier 3



### Transition and phase-in provisions

#### 1) EP < 19kW

| Max Engine Power  | MY        | РМ                 | NOx+NMHC | CO  |  |  |  |
|-------------------|-----------|--------------------|----------|-----|--|--|--|
| max Engine i owei | g/kWh     |                    |          |     |  |  |  |
| EP < 8kW          | 2008-2014 | 0.40 <sup>1)</sup> | 7.5      | 8.0 |  |  |  |
| 8 ≤ EP < 19       | 2008-2014 | 0.40               | 7.5      | 6.6 |  |  |  |

<sup>1)</sup> For hand-startable, air cooled and DI engines: possible delay until 2010 (0.60 g/kWh). For MY 2009 and earlier: Tier 2 standards applicable.

### 2) 19 ≤ EP < 37</p>

| MY        | PM    | CO  |     |  |  |  |
|-----------|-------|-----|-----|--|--|--|
|           | g/kWh |     |     |  |  |  |
| 2008-2012 | 0.30  | 7.5 | 5.5 |  |  |  |
| 2013-2014 | 0.03  | 4.7 | 5.5 |  |  |  |

### 3) 37 ≤ EP < 56</p>

| Option 1) | MY        | PM    | NOx+NMHC | CO  |  |  |
|-----------|-----------|-------|----------|-----|--|--|
| Option /  | NUL NUL   | g/kWh |          |     |  |  |
| # 1       | 2008-2012 | 0.30  | 4.7      | 5.0 |  |  |
| # 2       | 2012      | 0.03  | 4.7      | 5.0 |  |  |
| All       | 2013-2014 | 0.03  | 4.7      | 5.0 |  |  |

All engines ≥ 37 kW and < 56 kW. < 2013MY, must meet option #1.</li>

Under option #2, all engines ≥ 37 kW and < 56 kW, MY 2012, must meet Tier 4

#### 4) 56 ≤ EP< 130</p>

| MY 1) | Phase-in option  | PM   | NOx  | NMHC  | NOx+NMHC          | CO  |
|-------|------------------|------|------|-------|-------------------|-----|
|       | Filase-in option |      |      | g/kWł | ı                 |     |
| 2012  | Phase in (#1)    | 0.02 | 2.3  | 0.19  | -                 | 5.0 |
| 2013  | Phase in (#2)    | 0.02 | 3.4  | 0.19  | 4.0 <sup>2)</sup> | 5.0 |
| 2014  | All engines      | 0.02 | 0.40 | 0.19  | -                 | 5.0 |

<sup>1)</sup> PM/CO: full compliance from 2012 <sup>2)</sup> NOx + NMHC for 56 ≤ EP < 75 limit is 4.7 g/kWh

NOx/HC:

- option 2 (if no Tier 2 credits claimed):

- option 1 (if banked Tier 2 credits used): 50% engines must comply in 2012-2013 25% engines must comply in 2012-2014 Full compliance from 31 Dec. 2014



### 5) 130 ≤ EP < 560

| MY 1)     | Phase-in option | PM    | NOx  | NMHC | NOx+NMHC | CO  |  |  |
|-----------|-----------------|-------|------|------|----------|-----|--|--|
|           | Phase-in option | g/kWh |      |      |          |     |  |  |
| 2011-2013 | Phase in        | 0.02  | 2.0  | 0.19 | -        | 3.5 |  |  |
|           | Phase out       | 0.02  | -    | -    | 4.0      | 3.5 |  |  |
| 2014      | All engines     | 0.02  | 0.40 | 0.19 | -        | 3.5 |  |  |

<sup>1)</sup> PM/CO: full compliance from 2011; NOx/HC: 50% engines must comply in 2011-2013

### 6) EP > 560

| MY    | D                 | PM | NOx                      | NMHC | CO   |      |     |
|-------|-------------------|----|--------------------------|------|------|------|-----|
|       | Phase-in option   |    |                          |      | g/k  | Wh   |     |
| 2011  | $560 < kW \le 90$ | 00 | All                      | 0.10 | 3.5  | 0.40 | 3.5 |
| -2011 | k\W > 900         |    | Generators sets          | 0,10 | 0,67 | 0,40 | 3,5 |
| -2014 | kW > 900          | A  | Il except generator sets | 0.10 | 3.5  | 0.40 | 3.5 |

Smoke test: no change from Tier 3

No smoke test required for engines certified to PM ≤ 0.07g/kWh

No closed crankcase ventilation required if the open crankcase emissions are added to exhaust emissions.

Tier 4 includes provisions as ABT and FEL as well.

#### Tier 4 test cycles (See pages 77-79)

Steady-state test cycle: ISO 8178

Transient test

Tier 4 standards have to be met on both NRSC and NRTC cycles

NRTC required from 2011 for engines 130-560kW

2012 for engines 56-130kW

2013 for engines < 56kW

Cold start emissions are weighted at 5% and hot start emissions at 95% for the final result.

#### **NTE Standards**

Measured without any specific test schedule.

Effective in 2011 for engines > 130 kW 2012 for engines 56-130 kW

2013 for engines < 56 kW

NTE limits are set at 1,25 times the regular standard for each pollutant. Exceptions: if NOx < 2.5 g/kWh or PM < 0.07 g/kWh, NTE multiplier is 1,5 NTE standards apply on certification of engines and useful life of the engine. NTE purpose is to prevent the use of defeat devices.



# Off-Road S.I. engines

S.I. engines ≤ 19kW (CFR 40, Parts 90 and 91)

### Engine classes

| Class | Category     | Engine Displacement |
|-------|--------------|---------------------|
| I     | Non-handheld | 100 to < 225 cc     |
| I-A   | Non-handheld | < 66 cc             |
| I-B   | Non-handheld | 66 to < 100 cc      |
| II    | Non-handheld | ≥ 225 cc            |
|       | Handheld     | < 20 cc             |
| IV    | Handheld     | 20 to < 50 cc       |
| V     | Handheld     | ≥ 50 cc             |

### Phase 1 standards (MY 1997)

| Class Eng. Displ (CC |    | Eng Displ (CC)   | HC+NOx | HC   | со  | NOx  |
|----------------------|----|------------------|--------|------|-----|------|
|                      |    | Ling. Dispi (CC) |        | g/kV | /h  |      |
| 1                    | NH | < 225            | 16.1   | -    | 519 | -    |
| 11                   | NH | ≥ 225            | 13.4   | -    | 519 | -    |
|                      | Н  | < 20             | -      | 295  | 805 | 5.36 |
| IV                   | Н  | ≥ 20, < 50       | -      | 241  | 805 | 5.36 |
| V                    | н  | ≥ 50             | -      | 161  | 603 | 5.36 |

### Phase II Standards

| Eng Class HC+NOx |      | NMHC+NOx (NG engine) | СО  | Effective Date |
|------------------|------|----------------------|-----|----------------|
| I                | 16.1 | 14.8                 | 610 | 01 Aug. 07 1)  |
| I-A              | 50   | N/A                  | 610 | MY 2001        |
| I-B              | 40   | 37                   | 610 | MY 2001        |

<sup>1)</sup> also incl. any Class I eng family produced ≥ 01 Aug 03 before introd. into commerce

| Class II | Emissions | 2001 | 2002 | 2003 | 2004 | 2005, + |
|----------|-----------|------|------|------|------|---------|
|          | HC+NOx    | 18.0 | 16.6 | 15.0 | 13.6 | 12.1    |
|          | NMHC+NOx  | 16.7 | 15.3 | 14.0 | 12.7 | 11.3    |
|          | CO        | 610  | 610  | 610  | 610  | 610     |

| Eng<br>Class | Emission<br>(g/kWh) | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 |
|--------------|---------------------|------|------|------|------|------|------|
| III          | HC + NOx            | 238  | 175  | 113  | 50   | 50   | 50   |
|              | СО                  | 805  | 805  | 805  | 805  | 805  | 805  |
| IV           | HC + NOx            | 196  | 148  | 99   | 50   | 50   | 50   |
|              | CO                  | 805  | 805  | 805  | 805  | 805  | 805  |
| V            | HC + NOx            | -    | -    | 143  | 119  | 96   | 72   |
|              | CO                  | -    | -    | 603  | 603  | 603  | 603  |

Test procedure: SAE J1088 cycles A, B and C

- Cycle A: non handheld engines to operate at an intermediate speed Similar to ISO 8178-G1
- Cycle B: non handheld engines to operate at rated speed Similar to ISO 8178-G2
- Cycle C: Handheld engines

Similar to ISO 8178-G3 except weighting Mode 1: 85% and Mode 2: 15%

#### Useful Life categories for phase 2 engines

Emissions must be met throughout the engine useful life. Engine manufacturers have to select the most representative category of in-use operating periods in hours for the majority of engines in the engine family

| Class              | Category C | Category B | Category A |
|--------------------|------------|------------|------------|
| NH-IA              | 50         | 125        | 300        |
| NH-IB / NH-I       | 125        | 250        | 500        |
| NH-II              | 250        | 500        | 1000       |
| H-III / H-IV / H-V | 50         | 125        | 300        |

<u>ABT Program:</u> Phase II handheld engines and Class I-A and I-B non handheld engines have to fulfil a certification, averaging, banking & trading program. Non-hand Held engines < 1.0 liter and > 25 Hp: useful life 1000 hrs





# Large S.I. engines (harmonized w/ CARB thru MY2009)

40 CFR Part 1048

Includes non road equipment such as forklift, sweeper, pump and generator.

|           |                 |               |           | on 1) | Alternate em. Stand. For |         |  |
|-----------|-----------------|---------------|-----------|-------|--------------------------|---------|--|
| Standards | s MY Testing Ty |               | Standa    | rds   | serve duty               | engines |  |
|           |                 |               | HC+NOx CO |       | HC+NOx                   | co      |  |
| Tier 1    | 2004            | Duty cycle 2) | 4.0       | 50.0  | 4.0                      | 130     |  |
|           | -2006           | Field testing | 5.4       | 50.0  | 5.4                      | 130     |  |
| Tier 2    | 2007            | Duty cycle 2) | 2.7       | 4.4   | 2.7                      | 130     |  |
|           |                 | Field testing | 3.8       | 6.5   | 3.8                      | 200     |  |

<sup>1)</sup> Alternative according to the following formula: (HC+NOx) x (CO)<sup>0.784</sup> ≤ 8,57 Field testing limits use: (HC+NOx) x (CO)<sup>0.791</sup> ≤ 16.78

<sup>2)</sup> Tier 1: steady state cycle. Tier 2: steady state + transient cycles <u>Useful life period:</u> 7 years or 5000 operating hours, severe duty 7 yr / 1500 hrs

#### Blue Sky series emissions standards

MY 2003, when meeting 2004 requirements MY 2003-2006, when meeting 2007 requirements In addition:

HC+NOx  $\leq$  0.08 g/kWh and CO  $\leq$  4.4 g/kWh (steady-state and transient tests) HC+NOx  $\leq$  1.1 g/kWh and CO  $\leq$  6.6 g/kWh (field test)

### Test procedure

MY 2004-2006: ISO 8178-4 C2, D2

MY 2007: additional requirements: a/ warm up segment

b/ transient segment
 c/ steady state segment

#### Other requirements

Warranty: minimum 1st half of engine's useful life or 3 years.

Diagnostic system: from MY 2007

Monitoring area: air-fuel ratio maintained at  $\lambda$  1 if control system depends

on  $\lambda = 1$ 

emission control system malfunction

Evaporative emissions: from MY 2007

- 0.2g/gallon of fuel tank capacity for engines > 1L (3 days loss, 72-96 F temperature cycling)
- Design based certification possible

Manufacturers required to perform In-Use testing:

- test min of 4 engines in 25% of engine families
- small engine families (< 500 eng) require min of 2 engines tested
- if manufacturer's total production < 2000, min testing is 2 engines



### **Recreational vehicles engines**

#### Off highway Motorcycles

| MY   | Emission standards (g/km) |  | Phase-in | Max allowal<br>Emission lin | -  |
|------|---------------------------|--|----------|-----------------------------|----|
| 2006 | 2.0 25.0                  |  | 50%      | 20.0                        | 50 |
| 2007 | 2.0 25.0                  |  | 100%     | 20.0                        | 50 |

Useful life: ≥ 70 cc:10 000km or 5 years; < 70 cc: 5 000 km or 5 years

### All terrain vehicles (ATVs) and off road utility vehicles

| MY      | Emission standards (g/km) |      | Phase-in | Max allowat<br>Emission lin | -  |
|---------|---------------------------|------|----------|-----------------------------|----|
|         | HC+NOx CO                 |      |          | HC+NOx                      | CO |
| 2006    | 1.5                       | 35.0 | 50%      | 20.0                        | -  |
| 2007, + | 1.5                       | 35.0 | 100%     | 20.0                        | -  |

Useful life: ≥ 100 cc: 1000 hrs of engine operation or 5 years < 100 cc: 500 hrs of engine operation or 5 years

### Evaporative emissions standards

From MY 2008, max permeation emissions for fuel tank: 1.5 g/m<sup>2</sup>/day max permeation emissions for fuel lines: 15 g/m<sup>2</sup>/day

#### Snowmobiles: (Emissions standards in g/kWh)

Phase 1: HC: 100; CO: 275: Phase in 50% MY 2006; 100% MY 2007-2009 Phase 2: HC: 75; CO: 275: Phase in 100% MY 2010-2011 Phase 3: HC: 75; CO: 200: Phase in 100% MY 2012, →

Max allowable family emission: HC: 150; HC+NOx: 165; CO:400 Phase in 100%, MY 2012,  $\rightarrow$ 

Useful life: min 8,000 km, 400 hrs of engine operation or 5 years

#### Test cycles

Highway motorcycle test cycle: similar to FTP75 For MY 2006-2008: alternative J1088 California off - highway <u>Snowmobiles</u>: SAE 982017 All terrain vehicles (ATVs)

- Same transient chassis based FTP test used for Class I motorcycles
- Optional steady-state, engine-based, test (J1088) available thru MY2013
- FTP must be used for certification of >50% of manufacturer's vol. in MY2014
- FTP must be used for certification of 100% of manufacturer's vol. in MY2015



## CALIFORNIA

## 1) Diesel C.I. engines

#### New vehicles

CCR, Title 13, Division 3, Chapter 9, Article 4 Similar to US-EPA regulations

Regulation applies to all diesel cycle engines in the given power categories used for agricultural, forestry, constructional and industrial applications.

#### In-Use provisions

Core regulations adopted, some secondary modifications pending

Applies to mobile equipment >25 hp

Sets fleet average NOx and PM standards

Large (>5000hp total hp) fleets required beginning in CY2010 to:

- Meet declining PM standards each year or apply highest level verified diesel emission control system to 20% of its horsepower.
- Meet declining NOx standards each year or repower/replace a certain portion of their fleet with new equipment

Medium (2501-5000 total hp) must meet the same requirements beginning in CY2013.

Small fleets must meet the PM requirements beginning in CY2015.
 Special provisions exist for newer equip., low-use veh., small bus. credit prog.
 Surplus Off-road Opt-in for NOx (SOON) program for air districts to require additional NOx reductions for certain large fleets

## 2) Small off-road SI engines ≤ 19kW (SORE)

#### CARB standards are based on:

Engine displacement (no handheld/non-handheld categories) for tailpipe emis Category limit 65cc

Vertical and horizontal crankshaft engine classifications

#### Test procedures

SAE J1088: cycle A: engine > 65 cc configured for intermediate speed cycle B: engine > 65 cc configured for rated speed cycle C: engine > 65 cc

Similar to ISO 8178 G1, G2, G3

#### No SORE may be equipped w/ a defeat device



## CALIFORNIA

|       |                       | HC+NOx         | CO        | PM                      | Durability       |
|-------|-----------------------|----------------|-----------|-------------------------|------------------|
| MY    | Engine Class          | g/kWh (g/bhph) |           |                         | period (hours)   |
| 2000  | ≤ 65 cc               | 72 (54)        | 536 (400) | 2.0 (1.5) <sup>1)</sup> | 50/125/300       |
| -     | > 65 cc to < 225 cc   | 16.1 (12.0)    | 467 (350) | -                       | -                |
| 2001  | ≥ 225 cc              | 13.4 (10.0)    | 467 (350) | -                       | -                |
| 0000  | ≤ 65 cc               | 72 (54)        | 536 (400) | 2.0 (1.5) <sup>1)</sup> | 50/125/300       |
| 2002  | > 65 cc to < 225 cc h | 16.1 (12.0)    | 549 (410) | -                       | 125/250/500      |
| -     | > 65 cc to < 225 cc v | 16.1 (12.0)    | 467 (350) | -                       | -                |
| 2004  | ≥ 225 cc              | 12.0 (9.0)     | 549 (410) | -                       | 125/250/500      |
| 2005- | < 50 cc               | 50 (37)        | 536 (400) | 2.0 (1.5) <sup>1)</sup> | 50/125/300       |
| 2013+ | ≥ 50 to ≤ 80 cc       | 72 (54)        | 536 (400) | 2.0 (1.5) <sup>1)</sup> | 50/125/300       |
|       | > 80 to < 225 cc h    | 16.1 (12.0)    | 549 (410) | -                       | 125/250/500      |
| 2005  | > 80 to < 225 cc v    | 16.1 (12.0)    | 467 (350) | -                       | -                |
|       | ≥ 225 cc              | 12.1 (9.0)     | 549 (410) | -                       | 125/250/500      |
| 0000  | > 80 to < 225 cc      | 16.1 (12.0)    | 549 (410) | -                       | 125/250/500      |
| 2006  | ≥ 225 cc              | 12.1 (9.0)     | 549 (410) | -                       | 125/250/500      |
| 0007  | > 80 to < 225 cc      | 10.0 (7.5)     | 549 (410) | -                       | 125/250/500      |
| 2007  | ≥ 225 cc              | 12.1 (9.0)     | 549 (410) | -                       | 125/250/500      |
| 2008- | > 80 to < 225 cc      | 10.0 (7.5)     | 549 (410) | -                       | 125/250/500      |
| 2013+ | ≥ 225 cc              | 8.0 (6.0)      | 549 (410) | -                       | 125/250/500/1000 |

Low-emitting Blue Sky Series engine requirements Voluntary Emission Standards (g/kWh)

| MY      | Engine Displacement | HC+NOx | CO  | PM  |
|---------|---------------------|--------|-----|-----|
| 2005, + | < 50 cc             | 25     | 536 | 2.0 |
|         | ≥ 50, ≤ 80 cc       | 36     | 536 | 2.0 |
| 2007, + | > 80, < 225 cc      | 5.0    | 549 | -   |
| 2008, + | > 225 cc            | 4.0    | 549 | -   |

#### Evaporative Emission requirements

| Eng.<br>Displacement | MY         | 1 day diurnal g HC/day  | Fuel Hose<br>ROg/m <sup>2</sup> /day | Fuel Tank<br>ROg/m <sup>2</sup> /day | Carbon canister |
|----------------------|------------|-------------------------|--------------------------------------|--------------------------------------|-----------------|
| ≤ 80 cc, handheld    | 2007-2013+ |                         |                                      | 2.0                                  | TP902           |
| > 80 to < 225 cc     | 2006       | -                       | -                                    | -                                    | -               |
| Walk behind          | 2007-2008  | 1.3                     | -                                    | -                                    | -               |
| Mowers               | 2009-2013+ | 1.0                     | -                                    | -                                    | -               |
| > 80 to < 225 cc     | 2006       | -                       | 15                                   | -                                    | -               |
|                      | 2007-2011  | 1.20+0.056 tank vol (I) | 15                                   | 2.5                                  | TP902           |
| Others               | 2012-2013+ | 0.95+0.056 tank vol (I) | 15                                   | 1.5                                  | TP902           |
|                      | 2006-2007  | -                       | 15                                   | -                                    | TP902           |
| ≥ 225 cc             | 2008-2012  | 1.20+0.056 tank vol (I) | 15                                   | 2.5                                  | TP902           |
|                      | 2013+      | 1.20+0.056 tank vol (I) | 15                                   | 1.5                                  | TP902           |

<sup>1)</sup> HC+NOx, CO and PM stds applicable to all diesel; PM stds not applicable so SI eng but to all 2 stroke engine
Small produc permeation fur

Small production vol. exempted from diurnal and fuel tank permeation stds; low permeation fuel hoses and carbon canister required from MY 2010



## 3) Off-road Large S.I. engines

Applied to S.I. engines ≥ 19kW (25hp), except construction and farm equipment engines < 175hp, off-road motorcycle, all terrain vehicles, snowmobiles.

#### Test procedure:

ISO 8178-4 C2 all the engines except:

- Generator or constant speed applications: ISO 8178-4 D2

- Engines w/ characteristics similar to SORE (< 25hp): G1

| Engine                | MY                      | HC+NOx | CO   | Durability          |
|-----------------------|-------------------------|--------|------|---------------------|
| Displacement          |                         | g/kWh  |      | Period              |
| ≤ 1.0 I Steady state  | 2002-2010 +             | 12.0   | 54.9 | 1000 hrs or 2 years |
| > 1.0 liter           |                         |        |      |                     |
| Steady-state          | 2001-2003 <sup>1)</sup> | 4.0    | 49.6 | -                   |
| testing               | 2004-2006               | 4.0    | 49.6 | 3500 hrs or 5 years |
|                       | 2007-2009 <sup>2)</sup> | 2.7    | 4.4  | 5000 hrs or 7 years |
|                       | 2010 +                  | 0.8    | 20.6 | 5000 hrs or 7 years |
| > 1.0 liter           | 2007-2009 <sup>2)</sup> | 2.7    | 4.4  | 5000 hrs or 7 years |
| Transient testing     | 2010+                   | 0.8    | 20.6 | 5000 hrs or 7 years |
| > 1.0 I Field testing | 2007-2010+ 3)           | 3.8    | 6.5  | 5000 hrs or 7 years |

<sup>1)</sup> 2001: min 25% sales; 2002 min 50% sales; 2003: min 75% sales

ABT credits may be generated. No crankcase emissions from MY 2004.

#### Evaporative Emission Requirements

- HC emis. < 0.2 g/gal

- Non-metallic fuel lines must be made from Cat. 1 materials as def'd in SAE J2260 Liquid fuel in tank must not boil when machinery is operated in 30deg C ambient

| Large SI Engine Fleet Average Emission Level Standard: HC+NOx (g/kW | N-hr) |
|---------------------------------------------------------------------|-------|
|---------------------------------------------------------------------|-------|

| Fleet Type      | Jan. 1, 2009 | Jan. 1, 2011 | Jan. 1, 2013 |
|-----------------|--------------|--------------|--------------|
| Large Forklift  | 3.2 (2.4)    | 2.3 (1.7)    | 1.5 (1.1)    |
| Medium Forklift | 3.5 (2.6)    | 2.7 (2.0)    | 1.9 (1.4)    |
| Non-Forklift    | 4.0 (3.0)    | 3.6 (2.7)    | 3.4 (2.5)    |

- Provisions exist for some rental equip., agricultural equip., limited use equip. etc.

- Warranty period: shorter of 3 yr or 2,500 hr OR 3yrs if no usage meter

- Fleet operator administered in-use compliance program

 $^{2)}$  MY 2007-2009: alternative certification possible.: (HC+NOx) x CO<sup>0.784</sup>  $\leq$  8.57  $^{3)}$  From 2007, alternate emission std: (HC+NOx) x CO<sup>0.791</sup>  $\leq$  16.78



## CALIFORNIA

## 4) Off-highway recreational equipment vehicles

Motorcycles and ATV's

| Engine category Implementation date |      | CO (g/km) | HC <sup>1)</sup> (g/km) |
|-------------------------------------|------|-----------|-------------------------|
| > 90cc                              | 1997 | 15.0      | 1.2                     |
| < 90 cc                             | 1999 | 15.0      | 1.2                     |

<sup>1)</sup> corporate average standards

Optional Engine Certification Based Standards (g/km)

| Engine Category | Implementation date | HC + NOx 1) | CO  |
|-----------------|---------------------|-------------|-----|
| ATV's < 225 CC  | 1997                | 16.1        | 400 |
| ATV's ≥ 225 CC  | 1997                | 13.4        | 400 |
| ORSV / ORUV     | 2007                | 12          | 400 |
| SAND CARS       | 2007                | 13.4        | 400 |

<sup>1)</sup> corporate average standards

#### Off-road Sport Vehicles and Off-road Utility Vehicles

| Engine Category Certification Method |         | CO (g/km) | HC <sup>1)</sup> (g/km) |
|--------------------------------------|---------|-----------|-------------------------|
| ORSV / ORUV                          | Chassis | 15.0      | 1.2                     |
| Sand Car                             | Chassis | 15.0      | 1.2                     |

1) corporate average standards

#### Test procedure:

Off-road motorcycles and AZTVs and Sand cars Engines > 170cc: FTP 75 Engines ≤ 170cc: modified FTP 75 Useful life is 5 years or 10,000 km for all apllications

Evaporative Requirements

| Engine Category | HC (g/m²/day) | Temperature |
|-----------------|---------------|-------------|
| Tank            | 1.5           | 28°C        |
| Hose            | 15.0          | 23°C        |

Design based certification available



## **JAPAN**

Diesel powered special vehicles (off-highway)

 <u>Construction equipment</u> (Ministry of Land, Infrastructure and Transport) First phase (1996-1998) similar to Euro Stage I, US Tier 1. Second phase (Oct. 2003) similar to Euro Stage II, US Tier 2, Ministry of

Environment procedure.

Additional Requirements:

8 kW ≤ P < 19 kW: NOx: 9 g/kWh; HC: 1.5 g/kWh; CO: 5.0 g/kWh;

PM: 0.80 g/kWh; smoke: 40%

2) Ministry of Environment

Tests are made accordingly to ISO 8178.

Application: diesel off-road vehicles w/ engines w/ a rated output between 19 kW and 560 kW

2006+ standards are similar in stringency to US Tier 3 and

EU Stage III A but are not harmonized w/ US or EU regulations

Proposal for construction, farm and other off-road vehicles (> 56 kW or 75 hp)

NOx to be reduced by 90% in 2015; phase-in starting 2009

PM to be reduced by 88% in 2011, 93% in 2013 (Particulate filter mandatory)

|          | Rated Power     | NOx | HC      | со  | PM   | Start    |  |
|----------|-----------------|-----|---------|-----|------|----------|--|
|          | Rateu Power     |     | (g/kWh) |     |      |          |  |
|          | 19 kW – 37 kW   | 6.0 | 1.0     | 5.0 | 0.4  | 01/10/07 |  |
|          | 37 kW – 56 kW   | 4.0 | 0.7     | 5.0 | 0.3  | 01/10/08 |  |
| Diesel   | 56 kW – 75 kW   |     |         |     | 0.25 |          |  |
|          | 75 kW – 130 kW  | 3.6 | 0.4     | 5.0 | 0.2  | 01/10/07 |  |
|          | 130 kW – 560 kW | 3.6 | 0.4     | 3.5 | 0.17 | 01/10/06 |  |
| Gasoline | 19 kW – 560 kW  | 0.6 | 0.6     | 20  | -    | 2007     |  |

#### Small Utility Gasoline Engines (≤ 19 kW)

Voluntary standards from LEMA.

LEMA Tier 1 standards are aligned on EU Stage I and US EPA Tier 1 LEMA Tier 2 standards are aligned on EU Stage II and US EPA Tier 2

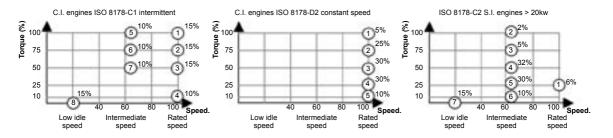
Implementation dates: Tier 1: SN and SH: 2003

Tier 2: SN: 2008; SH: 2011

| Durability: | Diesel: P ≤ 37 kW: 5,000 h | Gasoline: 5,000 h |
|-------------|----------------------------|-------------------|
|             | P > 37 kW: 8,000 h         |                   |

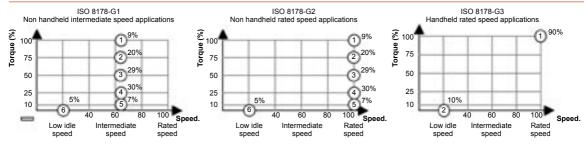


## **REQUIREMENTS IN OTHER AREAS OF THE WORLD**


| Canada         | Alignment on US EPA Tier 2 and Tier 3                                                                                                                                                                                                                                                                                                           | Switzerland | New engines for off-road veh. and machinery to meet current EU std                                                                                                                                                                                                                                                                                                     |
|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Croatia        | Dir 77/537/EEC and Dir 97/68/EC - ECE R24                                                                                                                                                                                                                                                                                                       |             | Stationary Diesel and gas engines: max PM ≤ 50 mg / Nm <sup>3</sup>                                                                                                                                                                                                                                                                                                    |
| India          | Agricultural and Forestry tractors:<br>Bharat TREM III: HC + NOX: 9,5; CO: 5,5; PM: 0,8g/kWh<br>Bharat Stage III A (TREM) equiv. EU Stage III A<br>engines < 37 kW: from Apr 10; engines ≥ 37 kW: from Apr 11<br>Construction machinery:<br>Bharat Stage II (CEV) equiv. to EU Stage I<br>Bharat Stage III (CEV) equiv. US Tier 2/3 from Apr 11 |             | Diesel equipment used in underground: DPF mandatory<br>Equipment < 50 kW operated < 2hrs/shift are exempt<br>General construction (BUWAL): diesel engines operated within<br>large construction sites must be fitted w/ DPF<br>Large construction site: City: min 4 000m², 1 year<br>Country: min 10 000 m², 1,5 year<br>Smoke capacity limits for vehicles w/out DPF: |
| Norway         | Dir 77/537/EC and Dir 97/68/EC - ECE R 24 test procedure                                                                                                                                                                                                                                                                                        |             | - naturally aspired engines: 2,5 m <sup>-1</sup>                                                                                                                                                                                                                                                                                                                       |
| PR of<br>China | Stds equiv. to EU Stage I/II reg. Smallest engines are covered by US Tier 1/2stds - Stage I: Oct 07; Stage II: Oct 09                                                                                                                                                                                                                           |             | - turbocharged engines: 3,0 m <sup>-1</sup> for vehicles w/ DPF: 0,24 m <sup>-1</sup><br>Gasoline construction engines (idle):                                                                                                                                                                                                                                         |
| Russia         | GOST R41 96-99 equiv. to EU Stage I<br>Dir 77/537/EC and Dir 97/68/EC – ECE R24 test procedure                                                                                                                                                                                                                                                  |             | CO: 35 000 cm <sup>3</sup> /m <sup>3</sup> ; HC: 500 cm <sup>3</sup> /m <sup>3</sup><br>Diesel construction machines / equipment ≥ 18 kW: PN: 10 <sup>12</sup> /kWh                                                                                                                                                                                                    |
| Singapore      | Off-road diesel engines must comply from Aug 00: either Japan or<br>US Tier I or EU Stage I standards<br>Test Cycle ISO 8178-4 C1                                                                                                                                                                                                               |             | EU NRMM requirements for eng. ≥ 37 kW: 01 Jan 09<br>18 to 37 kW: 01 Jan 10<br>Existing machines ≥ 37 kW built 2000-2008: compliance by 01 May 10<br>built bef. 2000: compliance by 01 May 15                                                                                                                                                                           |
| South<br>Korea | Engines for construction and industrial equipment:<br>Korean Tier 3 equivalent to US Tier 3 - TA: 01 Jan 08                                                                                                                                                                                                                                     | Turkey      | Harmonisation w/ EU regulation but w/ different application dates                                                                                                                                                                                                                                                                                                      |



## **TEST CYCLES**


#### NRSC Test

With warm engine, raw exhaust emissions are measured during a prescribed sequence of operating conditions. The test cycle consists of a number of speed and load modes. Intermediate speed is the maximum torque speed if it occurs between 60% and 75% of rated speed or 60% of rated speed if this is higher or 75% if this is lower.





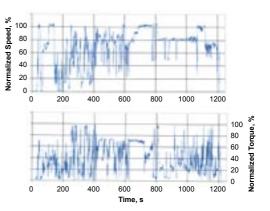
## **TEST CYCLES**



For stage 1, 0,85 and 0,15 respectively

Intermediate speed is the maximum torque speed if it occurs between 60% and 75% of rated speed or 60% of the rated speed if this is higher or 75% of the rated speed if this is lower

## Non Road Mobile Machinery




#### NRTC Test

The NRTC test has been developed by the US EPA in cooperation with the EU authorities. It will be used for both US EPA Tier 4 and EU Stage III regulations.

The NRTC is run twice (cold start/hot start) with the weighted PM being an - average of the hot (90%) and cold (10%) cycles for EU Stage III

- average of the hot (95%) and cold (5%) cycles for US Tier 4



## GLOSSARY

| ABT  | Average, Banking & Trading                |  |
|------|-------------------------------------------|--|
| ACEA | European Car Manufacturer Association     |  |
| COP  | Conformity of Production                  |  |
| DF   | Deterioration Factor                      |  |
| ECE  | Economic Commission for Europe,           |  |
|      | European subgroup of United Nations       |  |
| EEV  | Enhanced Environmentally Friendly Vehicle |  |
| EOBD | European Union On Board Diagnostic        |  |
| EPA  | US Environmental Protection Agency        |  |
| ELR  | European Load Response                    |  |
| ESC  | European Stationary Cycle                 |  |
| ETC  | European Transient Cycle                  |  |
| EU   | European Union, formally called EEC or EC |  |
| Evap | Evaporative Emissions                     |  |
| FC   | Fuel Consumption (EU)                     |  |
| FE   | Fuel Economy (US)                         |  |
| FEL  | Family Emissions Limits                   |  |
| FR   | First Registration, entry into service    |  |

| FTP   | Federal Test Procedure                       |  |
|-------|----------------------------------------------|--|
| GTR   | Global Technical Regulation (UN-ECE)         |  |
| GVW   | Gross Vehicle Weight                         |  |
| GVWR  | Gross Vehicle Weight Rating                  |  |
| HDDTC | Heavy Duty Diesel Transient Cycle            |  |
| HDGTC | Heady Duty Gasoline Transient Cycle          |  |
| LBS   | Pounds (1 lb = 454 g)                        |  |
| LDT   | Light Duty Truck                             |  |
| LDV   | Light Duty Vehicle = Passenger car $\leq$ 12 |  |
|       | passengers                                   |  |
| LEV   | Low Emission Vehicle (LEV1, LEV2)            |  |
| MTBE  | Methyl Tertiary Butyl Ether                  |  |
| MVEG  | Motor Vehicle Emissions                      |  |
|       | Group, advisory expert committee             |  |
|       | To the European Commission                   |  |
| MY    | Model Year                                   |  |
| NHV   | Net Heating Value of Fuel                    |  |
|       | (US Fuel Economy Meas. Method)               |  |
| NLEV  | National Low Emission Vehicle                |  |

| NMHC    | Non Methane Hydrocarbons                  |
|---------|-------------------------------------------|
| NMOG    | Non-Methane Organic Gases                 |
| OBD     | On Board Diagnostic                       |
| OTL     | OBD Threshold Limit                       |
| OMHCE   | Organic Material Hydrocarbon Equivalent   |
| PM      | Particulate Matter                        |
| ppm     | Parts per million                         |
| SHED    | Sealed House for Evaporation              |
|         | Determination                             |
| SULEV   | Super Ultra Low Emission Vehicle          |
| TA      | Type Approval                             |
| TLEV    | Transitional Low Emission Vehicle         |
| ULEV    | Ultra Low Emission Vehicle (ULEV1, ULEV2) |
| VT SHED | Variable Temperature SHED                 |
| WHSC    | Worldwide Heavy Duty Steady-State Cycle   |
| WHTC    | Worldwide Heavy Duty Transient Cycle      |
| WWH-OBD | Worldwide Harmonized Heavy Duty OBD       |
| ZEV     | Zero Emission Vehicle                     |



# Ultra high pressure at the head of the class.

The new Delphi High Pressure Heavy Duty Diesel Common Rail System is among the most advanced fuel systems in the world. Its ultra high pressure (up to 3,000 bar) capability provides the potential to minimize the need for expensive aftertreatment. The system is designed for 4- to 16-liter diesel engine programs and is suitable for on- and off-road applications.

Delphi has earned a reputation for durable, high tech electronic unit injector and electronic unit pump systems. Now we offer a range of diesel common rail systems with class-leading pressure capabilities, too.

To learn more, visit:

www.delphi.com/manufacturers/cv/powertrain/hphd\_dcrs/



Innovation for the Real World



# DELPHI

Innovation for the Real World

#### World Headquarters and Customer Center

5725 Delphi Drive Troy, Michigan 48098-2815 USA Tel: (1) 248.813.2000 Fax: (1) 248.813.2670

## European Regional Headquarters and Customer Technical Center

Avenue de Luxembourg L-4940 Bascharage G.-D. Luxembourg Tel: (352) 50.18.1 Fax: (352) 50.18.22.88

## Asia Pacific Regional Headquarters

Building A-3, #118, De Lin Road Wai Gao Qiao Free Trade Zone, Pudong Shanghai, 200131 China Tel: (86) 21.2896.8866 Fax: (86) 21.5046.3937

## South American Regional Headquarters Av. Goiás, 1860 São Caetano do Sul São Paulo 09550-050 Brazil Tel: (55) 11.4234.9500 Fax: (55) 11.4234.9479

Delphi is pleased to offer free of charge to our Customers our Worldwide Emissions Standards Booklets:

- Passenger Cars & Light Duty Trucks
- Heavy Duty & Off-Road Vehicles

Electronic versions of the booklets are also available on our website:

www.delphi.com/pdf/emissions/2009\_Delphi\_PC.pdf www.delphi.com/pdf/emissions/2009\_Delphi\_HD.pdf

For any Worldwide Emissions Regulation Information, please call our emission expert on: (352) 5018-2094 or e-mail: emissions.standards@delphi.com

## delphi.com