

Implementing a 128Kx32 Dual-Port RAM Using the
FLASH370™

Introduction
More and more communication systems require the use of
very deep, high-speed dual-port memories to provide a com-
mon storage area for use between processors. System de-
signers are looking for dual-port memories of 128 KByte and
larger in size. These same systems are using 32-bit buses.
These larger dual-port memories are not readily available as
monolithic devices. As a result, the designer is left with the
task of implementing these devices using discrete compo-
nents. A full-featured implementation would include some
static RAM combined with external support logic, arbitration,
and control functions. This application note describes how to
implement a 128K x 32-bit-wide dual-port memory or larger,
using high-speed 1M SRAMs and a Cypress CPLD, the
CY7C371. The CPLD, or Complex Programmable Logic De-
vice, will be used to implement the memory control functions
of the dual-port system and will be coded using VHDL.

Dual-Port Block Diagram
A good reference for the function and operation of a dual-port
memory can be found in the application note in the Cypress
Applications Handbook titled “Understanding Dual-Port
RAMs.” To reiterate, the block diagram of a standard dual-port
memory is shown in Figure 1. This block diagram indicates
the various blocks associated with a dual-port. There are four
major blocks: the memory array, the arbitration/control func-
tion, the right port or interface, and the left port or interface.

As can be seen from the block diagram in Figure 1, there are
a series of signals that are required both internal and external
to this system. The external signals are the normal signals
that a monolithic dual-port chip would have. These are the
signals that are labeled in the block diagram. The other sig-
nals are the internal signals that are used to allow the pieces
of this dual-port system to communicate with one another.
These are the address output enables for the address inter-
face logic, the data output enable and the latch enable for the
data interface logic, and the RAM output enable and write
enable. These will be discussed in detail later.

The memory array consists of a single, standard SRAM or
group of SRAMs to make up the overall array size. This array
can be expanded in depth and width as needed. The arbitra-
tion/control logic accepts asynchronous read or write re-
quests from each port or interface and sequences through a
series of internal states that perform the read or write opera-
tion on the memory array. A CPLD is used in this example to
implement this logic. The control logic must arbitrate between
requests as well as synchronize the inputs to the internal
clock frequency of the control function. The address buffers
are used to isolate the address bus of the memory array from
the left and right address ports. This allows the control-logic
CPLD to select the correct address at the proper time. The
bidirectional, latched data path allows data to be written to or
read from the memory array. The data is also held in the latch
during the remainder of the access.

Figure 1. Dual-Port Memory Array Block Diagram

RIGHT PORT DATA READY

Address
Interface

Address
Interface

Left Right

WRITE CONTROL

RIGHTLEFT
DATA

I/F
DATA

I/F
RIGHT DATA

OUTPUT
ENABLE

LEFT DATA

ENABLE
OUTPUT

CHIP SELECTCHIP SELECT
WRITE CONTROL

RIGHT
ADDRESSADDRESS

LEFT CPU CPU

MEMORY

ARRAY

CONTROL

(CY7C371)LEFT PORT DATA READY
Cypress Semiconductor Corporation • 3901 North First Street • San Jose • CA 95134 • 408-943-2600
December 1995

Implementing a Dual-Port RAM Using FLASH370
Use of SRAM for Dual-Port
A 128Kx8 SRAM (like the Cypress CY7C109, 25-ns SRAM,
as used in this note) was chosen here to implement a 128K x
32 sized array. Appendix A shows the schematic representa-
tion of the design. The array can be any size; this note shows
this configuration because it depicts how to expand in the
width direction. Cascading devices to expand the depth of the
array is just as easily implemented. In either case, the con-
tents of the control logic CPLD remain the same. The array
could also be implemented with a single SRAM device if the
array size warrants it.

A Brief Description of the CY7C371
The CY7C371 is a complex PLD with 32 macrocells, 32 I/O
pins and 6 dedicated input pins (including 2 clock pins). The
macrocells are grouped into two Logic Blocks of 16 macro-
cells each. There is a programmable interconnect matrix or
PIM that connects the two logic blocks to the inputs and to
each other. The macrocells themselves contain a register that
can be configured as a T flip-flop, a D flip-flop, a level-trig-
gered latch, or can be bypassed for combinatorial product
terms. Each macrocell can support up to 16 product terms.
For more detailed information on the CY7C371 and the whole
FLASH370™ family of CPLDs, please consult the application
note “The FLASH370 Family Of CPLDs and Designing with
Warp2®” in the Cypress Applications Handbook.

The CY7C371 is well suited to this application. The dedicated
inputs can be configured with a double registering mecha-
nism to synchronize asynchronous signals so that they can
be used synchronously inside the CPLD. The double register-
ing will also dramatically reduce the chance of a metastable
condition. The CPLD architecture is optimal for state machine
designs and this arbiter requires three state machines to de-
fine it. The double-registered input configuration will be used
in this example to resync the asynchronous chip select and
write control inputs from both ports.

State Machine Design
The finite state machine that controls the dual-port memory
array is really comprised of three “dependent” state machines
operating concurrently as shown in Figure 2. Dependent state
machines monitor or depend on the state of another state
machine in order to change state. The first two machines,
called “leftside” and “rightside,” are identical. Their primary
task is to monitor the interface of both ports. When the chip
select input (R_CS or L_CS) goes active (logic LOW), the
appropriate machine advances from the Ready state to the
Memory Cycle state. The Memory Cycle state will start one
of the memory access sequences. The length of each mem-
ory sequence (i.e., the number of state machine cycles) can
be “tuned” to the access time of the SRAMs in the memory
array. The memory cycle state machine will cycle back to the
Ready state at the same time the memory access sequence
ends and the select input goes inactive. It will either wait for a
new request or start another memory access depending on
the state of the other state machine (“leftside” or “rightside”).
In the case where two requests are pending or appear at the
same time, the left port gets priority. This means that the
memory access for the left port is performed first. A READY
signal (L_READY and R_READY) indicates when data is
available on either port, it can only be active when either se-
lect input is active.

State Machine Implementation
The actual implementation of the state machines in the
CY7C371 is done using VHDL. The structure of VHDL allows
for simplification in coding these dependent state machines;
the use of multiple processes and the CASE statement prove
to be very powerful and efficient ways to perform this task.

Upon reset, both rightside and leftside state machines enter
the Ready state and wait for a memory access. The leftside
state machine will be used as an example. Both sides are
identical at this point. Once a request is detected (for example
L_CS goes active (=0)), the leftside state machine transitions
into a memory cycle. A priority scheme favoring the left port
is encoded into the process for both state machines. If two
accesses occur simultaneously, the left one is performed first.
If one port request is detected before the other, it is completed
while the other is held off. This extends the overall access
time of the memory, but allows for “fair” operation. Each mem-
ory access sequence, Left Read, Left Write, Right Read, and
Right Write, is comprised of four states. The four states (R0,
R1, R2, REND or W0, W1, W2, WEND) run sequentially, one
per clock cycle. They are there to allow the proper timing for
the generation of control signals to the various components

Figure 2. Memory Control Function State Machine

RIGHTSIDELEFTSIDE

R_R1L_W1L_R1

L_R2

L_WENDL_REND R_WEND

L_CS * R_CS * (R_END +
R_READY)

L_CS * R_CS

RESET RESET

READY

MEMORY
CYCLE

READY
L_CS = 1

R_CS = 1
R_CS * L_CS

OR
R_CS * L_CS * L_END

OR

L_WE = 1

L_WE = 0 R_WE = 0

R_WE = 1

L_R0

R_REND

L_W0

L_W2

R_W1

R_W2

R_W0 R_R0

R_R2

L_CS = 0 L_CS = 0 R_CS = 0 R_CS = 0

ALL RETURN TO ’READY’ WHEN CS GOES INACTIVE
2

Implementing a Dual-Port RAM Using FLASH370
in the dual-port system. The REND or WEND state indicates
the end of a memory cycle and is also a hold state if the CS
is still active for that particular port. Once the REND or WEND
state is reached and the CS is inactive, the state machine
returns to the READY state and another access can be initi-
ated.

CY7C371 Signals
A total of ten outputs are required to control the memory array
and both the left and right ports. Refer to Appendix A for the
128K x 8 dual-port memory array schematic. The SRAM in
the array is controlled by RAM_OE and RAM_WE. The
RAM_OE signal is created when either port executes a read
successfully. Therefore, the RAM_OE signal is enabled dur-
ing either read sequence only during the R0 through R2 cy-
cles. Writes to the SRAM are controlled by the write state
machine for either port. The RAM_WE is generated for either
port during the W1 and W2 cycles of a write access only. The
port address inputs are isolated from the memory array by a
set of 74FCT244Ts. The left port is controlled by L_ADD_OE
and is generated during the left memory access sequence
states 0 through 2 for either a read or a write to the left port.
The right port address is controlled in the same manner, by
using the right memory access sequence states 0 through 2.
The data buffer functions are implemented using
74FCT543Ts with the “B” (HIGH current) side interfaced to
the outside and the “A” side interfaced to the memory array.
During reads, the latch enables (L_LAT_EN, R_LAT_EN) are
used to hold the data read from the array in the latches. The
output enables (L_OE, R_OE) are then driven directly to ac-
cess the read data. During writes, the output enables
(L_DAT_OE, R_DAT_OE) are used to allow the data to pass
from the outside into the memory array. These output enables
and latch enables are controlled by the OR of the appropriate
memory access sequence states. Mealy outputs are used for
the L_READY and R_READY signals. These outputs are ac-
tive whenever the respective state machine is in state 2 and
the CS is active. Using Mealy outputs here allows the ready
signal to go inactive as soon as the CS input (L_CS or R_CS)
goes inactive instead of waiting for the state machine to tran-
sition back to the READY state.

VHDL Code for Controller in 371
Appendix B contains the VHDL code used for the CY7C371
in this design. This code was compiled with the Cypress

Warp2 tool and targeted for the CY7C371 to generate the
programming (JEDEC) and simulation file(s). The Nova sim-
ulator in the Warp2 tool was used to verify the design. For
details on these tools please refer to the Warp2 User’s Guide.
Furthermore, a thorough explanation of VHDL constructs can
be found in the Warp2 Reference Manual.

The code in Appendix B starts out by defining the inputs and
outputs and the internal signals required. The first process is
for the Chip Select and Write Enable resync. This is where the
double registering occurs, as mentioned in the description of
the CY7C371 earlier in this application note. The next pro-
cess is where the state machine definitions start. It begins by
defining the rightside state machine and uses a separate pro-
cess to define the leftside state machine. Buried within each
of these processes is the Memory Cycle state machine for the
READ and WRITE cycles of each port. The next process is
used to define the RAM_OE and RAM_WE for the memory
array control. This is a simple IF-THEN-ELSE clause. The last
process is used to generate the signal which gets used in the
Mealy equations for the leading edge of the L_READY and
R_READY signals. Lastly, the L_READY and R_READY sig-
nals are defined outside of a process by gating state2 with the
CS input.

Performance Evaluation
To evaluate the performance of this dual-port system, three
different timing scenarios were looked at. The first scenario is
for an unarbitrated access from either port. This assumes that
both port state machines are in the Ready state and only one
access occurs. The second scenario involves the right port
being granted access shortly before the left port, forcing the
left port to wait. The third involves simultaneous accesses
from each port. In this case the left side has priority (by de-
sign) and the right side is held off. These cases are shown in
the following three timing diagrams (Figures 3, 4, and 5). From
these it is possible to determine the timing of each access by
counting the number of clock cycles for each scenario.

Table 1 lists the number of clock cycles for each of the three
cases of Figures 3, 4, and 5. These numbers reflect the worst
case situations for Case #2 and #3 where the maximum pos-
sible delay is assumed.
3

Implementing a Dual-Port RAM Using FLASH370
Figure 3. Timing Diagram—Unarbitrated Access From Right Port

Figure 4. Timing Diagram—Right Port Access Before Left Port

R_WAITCSR2R1R0

LAT_EN

R_WE

L_CS

CLOCK

R_CS

L_WE

RAM_WE

RAM_OE

ADD_OE

R_DAT_OE

R_READY

L_READY

R_STATES REND

L_STATES L_WAITCS

R_WAITCS

L_WAITCS

R_WAITCSR2R1R0

LAT_EN

R_WE

L_CS

CLOCK

R_CS

L_WE

R0 R1 R2 REND

RAM_WE

RAM_OE

ADD_OE

R_DAT_OE

R_READY

L_READY

R_STATES REND

L_STATES L_WAITCS

R_WAITCS

R L

RIGHT LEFT
4

Implementing a Dual-Port RAM Using FLASH370
Figure 5. Timing Diagram—Simultaneous Access

Table 1. Access Time in Clock Cycles

Timing Parameter Case #1 Case #2 Case #3

LEFT

Input Set-Up Timing 2 clocks Note 1 2 clocks

Arbitration Cycle 1 clock Note 1 1 clock

Memory Access 3 clocks 3 clocks 3 clocks

Latch Hold Cycle 1 clock 1 clock 1 clock

Total Number of Clock Cycles 7 clocks 11 clocks 7 clocks

RIGHT

Input Set-Up Timing N/A[2] 2 clocks Note 1

Arbitration Cycle N/A 1 clock Note 1

Memory Access N/A 3 clocks 3 clocks

Latch Hold Cycle N/A 1 clock 1 clock

Total Number of Clock Cycles N/A 7 clocks 11 clocks

Notes:
1. Worst case input set-up timing and arbitration cycle assumes 7 clock access delay on opposite port.
2. N\A means No Activity on this port.

R

R_WAITCS

L_WAITCS

RIGHT

L

R2R1R0

LAT_EN

R_WE

L_CS

CLOCK

R_CS

L_WE

R0 R1 R2 REND

RAM_WE

RAM_OE

ADD_OE

R_DAT_OE

R_READY

L_READY

R_STATES

LEFT

RENDL_STATES L_WAITCS

R_WAITCS
5

Implementing a Dual-Port RAM Using FLASH370
To calculate the access time in nanoseconds, the following
formula is applied:

 tACC = tIS371 + [tCYC371 x #clocks] + tPD543

Where:

tACC = total access time

tIS371 = CY7C371 input register set-up time = 2 ns

tCYC371 = clock cycle of CY7C371 = 7 ns

#clocks = number of clocks from Table 1

tPD543 = 74FCT543CT transparent to latched propagation
delay = 7 ns

Since the CY7C371 inputs are double registered, two clock
cycles are required to resync the Chip Select and Write En-
able inputs. If the input set-up timing can be guaranteed, this
internal delay of two cycles can be eliminated by using single-
or non-registered inputs.

Memory Expansion
The example used here shows that an array of any size can
be easily implemented. The addition of memories and asso-
ciated address buffers makes depth expansion easy. The
width may also be increased by cascading memories and
adding additional buffers. Both techniques would be utilized
to expand in depth and width. These enhancements are pos-
sible without making any changes to the CY7C371 Control
Function PLD design. Likewise this design could implement
a smaller array than shown here, again without revising the
CY7C371.

Summary
This application note has demonstrated the implementation
of a large asynchronous dual-port memory array by utilizing
standard memory and logic devices and the CY7C371. The
performance of this design is limited by various factors. The
access time of the SRAM and the clock speed of the
CY7C371 used are two factors that could improve perfor-
mance without changing the VHDL code for the CY7C371.
Another option would require some design changes, though
minor. Making one or both ports synchronous with respect to
the CPU would eliminate the two-clock delay associated with
the resync function of the CY7C371. The implementation of
these improvements offers the designer a few options to tailor
the design to fit specific system requirements and achieve the
desired level of performance.
6

Implementing a Dual-Port RAM Using FLASH370
Appendix A. Schematic

R_WE
R_CS
L_WE
L_CS

OE

RAM DATA 31:0

32

8

8

8

8

L_ADDR 16:0 R_ADDR 16:0

x4
74FCT543CT

R_DATA 31:0L_DATA 31:0

CEBA
LEBA
OEBA
CEAB
LEAB
OEAB

B A

OE–
WE–
CE1–
CE2

128K x 32

ARRAY

128Kx8

128Kx8

128Kx8

128Kx8
CY7C109

CY7C109

CY7C109

CY7C109

Address
Interface

Address
Interface

x2.5

74FCT244T

17

x2.5

74FCT244T

CONTROL

(CY7C371)

RAM Address
16:0

17RightLeft

MEMORY
17

Vcc

74FCT543CT
x4

BA

OE

RESET

Clock

L_OE R_OE

L_READY
R_READY

R_ADD_OE

L_ADD_OE RAM_OE
RAM_WE

OE–
WE–
CE1–
CE2

OE–
WE–
CE1–
CE2

OE–
WE–
CE1–
CE2

CEBA
LEBA
OEBA
CEAB
LEAB
OEAB
7

Implementing a Dual-Port RAM Using FLASH370
Appendix B. VHDL Code for Controller
-- Dual-port memory controller

ENTITY dpram IS
 PORT (clock, r_we_n, r_cs_n, l_we_n, l_cs_n, reset_n: IN BIT; --INPUTS
 ram_oe_n, ram_we_n : OUT BIT; --OUTPUTS
 r_ready, r_add_oe, r_dat_oe, r_lat_en : OUT BIT;
 l_ready, l_add_oe, l_dat_oe, l_lat_en : OUT BIT
);
END dpram;

--
USE work.rtlpkg.all;

ARCHITECTURE ARCHdpram OF dpram IS
 TYPE ctrl_states IS (waitcs, r0, r1, r2, rend, w0, w1, w2, wend); --Internal signal declaration
 SIGNAL rightside, leftside : ctrl_states;
 SIGNAL r_we_ndd, r_we_nd, l_we_ndd, l_we_nd : BIT;
 SIGNAL r_cs_ndd, r_cs_nd, l_cs_ndd, l_cs_nd : BIT;
 SIGNAL r_ready_int, l_ready_int : BIT;
BEGIN

--Double register the input we and cs signals for sync & metastability hardening
 PROCESS BEGIN
 WAIT UNTIL clock = ’1’;
 r_we_ndd <= r_we_nd; r_we_nd <= r_we_n;
 l_we_ndd <= l_we_nd; l_we_nd <= l_we_n;
 r_cs_ndd <= r_cs_nd; r_cs_nd <= r_cs_n;
 l_cs_ndd <= l_cs_nd; l_cs_nd <= l_cs_n;
 END PROCESS;

--RIGHTSIDE STATE MACHINE
 PROCESS BEGIN
 WAIT UNTIL clock = ’1’;
 CASE rightside IS
 WHEN waitcs =>
 r_add_oe <= ’1’; r_dat_oe <= ’1’; r_lat_en <= ’1’;
--goto state 0 if : r_cs is active + L_cs inactive or r_cs active + (l_cs active but at end)
 IF (((r_cs_ndd = ’0’) AND (l_cs_ndd = ’1’)) OR
 ((r_cs_ndd = ’0’) AND (l_cs_ndd = ’0’) AND
 ((leftside = wend) OR (leftside = rend)))) THEN
--start write state machine if WE active
 IF r_we_ndd = ’0’ THEN
 rightside <= w0;
 r_add_oe <= ’0’; r_dat_oe <= ’0’; r_lat_en <= ’1’;
 ELSE
--start read state machine if WE inactive
 rightside <= r0;
 r_add_oe <= ’0’; r_dat_oe <= ’1’; r_lat_en <= ’1’;
 END IF;
 ELSE
 rightside <= waitcs;
 END IF;

--RIGHTSIDE READ STATE MACHINE
 WHEN r0 =>
 rightside <= r1;
 r_add_oe <= ’0’; r_dat_oe <= ’1’; r_lat_en <= ’1’;
 WHEN r1 =>
 rightside <= r2;
 r_add_oe <= ’0’; r_dat_oe <= ’1’; r_lat_en <= ’0’;
 WHEN r2 =>
 rightside <= rend;
 r_add_oe <= ’1’; r_dat_oe <= ’1’; r_lat_en <= ’1’;
8

Implementing a Dual-Port RAM Using FLASH370
 WHEN rend =>
 r_add_oe <= ’1’; r_dat_oe <= ’1’; r_lat_en <= ’1’;
 IF r_cs_ndd = ’1’ THEN
 rightside <= waitcs;
 ELSE
 rightside <= rend;
 END IF;

--RIGHTSIDE WRITE STATE MACHINE
 WHEN w0 =>
 rightside <= w1;
 r_add_oe <= ’0’; r_dat_oe <= ’0’; r_lat_en <= ’1’;
 WHEN w1 =>
 rightside <= w2;
 r_add_oe <= ’0’; r_dat_oe <= ’0’; r_lat_en <= ’1’;
 WHEN w2 =>
 rightside <= wend;
 r_add_oe <= ’1’; r_dat_oe <= ’1’; r_lat_en <= ’1’;
 WHEN wend =>
 r_add_oe <= ’1’; r_dat_oe <= ’1’; r_lat_en <= ’1’;
 IF r_cs_ndd = ’1’ THEN
 rightside <= waitcs;
 ELSE
 rightside <= wend;
 END IF;
 WHEN others =>
 rightside <= waitcs;
 r_add_oe <= ’1’; r_dat_oe <= ’1’; r_lat_en <= ’1’;
 END CASE;
 END PROCESS;
--LEFTSIDE STATE MACHINE
 PROCESS BEGIN
 WAIT UNTIL clock = ’1’;
 CASE leftside IS
 WHEN waitcs =>
 l_add_oe <= ’1’; l_dat_oe <= ’1’; l_lat_en <= ’1’;
--goto state 0 if l_cs is active + r_cs is inactive or l_cs active + (r_cs active but at end
or in waitcs state)
 IF (((l_cs_ndd = ’0’) AND (r_cs_ndd = ’1’)) OR
 ((l_cs_ndd = ’0’) AND (r_cs_ndd = ’0’) AND
 ((rightside = wend) OR (rightside = rend) OR (rightside = waitcs)))) THEN
--start write state machine if WE active
 IF l_we_ndd = ’0’ THEN
 leftside <= w0;
 l_add_oe <= ’0’; l_dat_oe <= ’0’; l_lat_en <= ’1’;
 ELSE
--start read state machine if WE inactive
 leftside <= r0;
 l_add_oe <= ’0’; l_dat_oe <= ’1’; l_lat_en <= ’1’;
 END IF;
 ELSE
 leftside <= waitcs;
 END IF;
--LEFTSIDE READ STATE MACHINE
 WHEN r0 =>
 leftside <= r1;
 l_add_oe <= ’0’; l_dat_oe <= ’1’; l_lat_en <= ’1’;
 WHEN r1 =>
 leftside <= r2;
 l_add_oe <= ’0’; l_dat_oe <= ’1’; l_lat_en <= ’0’;
 WHEN r2 =>
 leftside <= rend;
 l_add_oe <= ’1’; l_dat_oe <= ’1’; l_lat_en <= ’1’;

Appendix B. VHDL Code for Controller (continued)
9

Implementing a Dual-Port RAM Using FLASH370
 WHEN rend =>
 l_add_oe <= ’1’; l_dat_oe <= ’1’; l_lat_en <= ’1’;
 IF l_cs_ndd = ’1’ THEN
 leftside <= waitcs;
 ELSE
 leftside <= rend;
 END IF;

--LEFTSIDE WRITE STATE MACHINE
 WHEN w0 =>
 leftside <= w1;
 l_add_oe <= ’0’; l_dat_oe <= ’0’; l_lat_en <= ’1’;
 WHEN w1 =>
 leftside <= w2;
 l_add_oe <= ’0’; l_dat_oe <= ’0’; l_lat_en <= ’1’;
 WHEN w2 =>
 leftside <= wend;
 l_add_oe <= ’1’; l_dat_oe <= ’1’; l_lat_en <= ’1’;
 WHEN wend =>
 l_add_oe <= ’1’; l_dat_oe <= ’1’; l_lat_en <= ’1’;
 IF l_cs_ndd = ’1’ THEN
 leftside <= waitcs;
 ELSE
 leftside <= wend;
 END IF;
 WHEN others =>
 leftside <= waitcs;
 l_add_oe <= ’1’; l_dat_oe <= ’1’; l_lat_en <= ’1’;
 END CASE;
 END PROCESS;

--RAM_OE and RAM_WE control signal logic
 PROCESS BEGIN
 WAIT UNTIL clock = ’1’;
 IF (((rightside = waitcs) AND ((((r_cs_ndd = ’0’) AND (l_cs_ndd = ’1’) AND (r_we_ndd = ’1’)) OR
 ((r_cs_ndd = ’0’) AND (l_cs_ndd = ’0’) AND (r_we_ndd = ’1’) AND
 ((leftside = wend) OR (leftside = rend))))))
 OR
 ((leftside = waitcs) AND (((l_cs_ndd = ’0’) AND (r_cs_ndd = ’1’) AND (l_we_ndd = ’1’)) OR
 ((l_cs_ndd = ’0’) AND (r_cs_ndd = ’0’) AND (l_we_ndd = ’1’) AND
 ((rightside = wend) OR (rightside = rend) OR (rightside = waitcs)))))
 OR
 (rightside = r0) OR (rightside = r1)
 OR
 (leftside = r0) OR (leftside = r1))
 THEN
 ram_oe_n <= ’0’;
 ELSE
 ram_oe_n <= ’1’;
 END IF;

 IF ((leftside = w0) OR (leftside = w1) OR
 (rightside = w0) OR (rightside = w1))
 THEN
 ram_we_n <= ’0’;
 ELSE
 ram_we_n <= ’1’;
 END IF;
 END PROCESS;

Appendix B. VHDL Code for Controller (continued)
10

Implementing a Dual-Port RAM Using FLASH370
FLASH370 and Warp2 are trademarks of Cypress Semiconductor Corporation.

--READY signal logic for leading edge of signal
 PROCESS BEGIN
 WAIT UNTIL clock = ’1’;
 IF ((rightside = r1) OR (rightside = w1)) THEN
 r_ready_int <= ’0’;
 END IF;
 IF ((r_cs_nd = ’1’) OR (reset_n = ’0’)) THEN
 r_ready_int <= ’1’;
 END IF;

 IF ((leftside = r1) OR (leftside = w1)) THEN
 l_ready_int <= ’0’;
 END IF;
 IF ((l_cs_nd = ’1’) OR (reset_n = ’0’)) THEN
 l_ready_int <= ’1’;
 END IF;
 END PROCESS;

--MEALY outputs for READY signal to turn off as soon as CS goes inactive
 l_ready <= ’0’ WHEN ((l_ready_int = ’0’) AND (l_cs_nd = ’0’)) ELSE ’1’;
 r_ready <= ’0’ WHEN ((r_ready_int = ’0’) AND (r_cs_nd = ’0’)) ELSE ’1’;

END ARCHdpram;

Appendix B. VHDL Code for Controller (continued)
© Cypress Semiconductor Corporation, 1995. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use
of any circuitry other than circuitry embodied in a Cypress Semiconductor product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize
its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress
Semiconductor products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress Semiconductor against all charges.

	Introduction
	Dual-Port Block Diagram
	Use of SRAM for Dual-Port
	A Brief Description of the CY7C371
	State Machine Design
	State Machine Implementation
	CY7C371 Signals
	VHDL Code for Controller in 371
	Performance Evaluation
	Memory Expansion
	Summary

