
Using custom types to represent elevation data

A common goal for digital mapmakers is to try to have the onscreen results retain the
look of a paper map while offering all of advantages of a GPS receiver. I’ve developed a
method for presenting elevation information using colored polygon layers instead of
topographic lines. Here’s a sample of what can be done with this technique:
 Map with elevation layers using custom types rendered in MapSource

If you’ve studied the possibilities of using custom types, you know that there are 8 levels
of draw order specified in your TYP file. Here’s a portion of a [_draworder] section:

[_drawOrder]
Type=0x01,1 ; Large urban area >200k
Type=0x02,1 ; Small urban area <200k
Type=0x03,1 ; Rural housing area
Type=0x04,1 ; Military base
Type=0x05,1 ; Parking lot
Type=0x06,1 ; Parking garage
Type=0x07,1 ; Airport
Type=0x08,3 ; Shopping center
…(up to 0x54)
[end]

The lowest numbers are drawn first, A polygon with a drawOrder of 8 would be drawn
above all other polygons, but below all polylines and points.

My goal was to utilize some of the unused polygon types, repurposing them to show
elevation in my maps.

The first step is to determine is the range of elevation data we intend to show in our map. This
depends entirely upon the data that’s available to you. You may have topo layer information
every 100 meters up to 3000 meters (as shown in the sample map above), or you may have topo
layers from 100’ to 500’ at 25’ intervals. The key is to pick layers at evenly spaced intervals, for
example every 100’ or every 300’. For my sample map, I followed directions available at
http://home.cinci.rr.com/creek/garmin.htm, and downloaded elevation data for the Seattle area.

The area that I’m working with has layers starting at 100’ with intervals every 25’, up to 500’.
That’s a total of 16 discrete elevations. 8 representative samples from this data would start at
100’, taking every other layer up to 450’ for a total of 8 overlaid elevation layers.

After deciding which layers you want to represent in your map, the next step is to perform some
transformations on your source data. This portion of the work is the most tedious, but the results
are worth it. This assumes that you are comfortable editing Polish format source files and
familiar with using GPSMapEdit!

Here are the steps for converting topo lines to polygons: • Load your source data file with the original topo information. • Using a text editor, extract all Polyline definitions with the same labels, saving

them in separate files. cGPSMapper uses the label of types 0x20, 0x21 and 0x22
to represent the elevation of the topo line. In my sample, I ended up with files
named 0100Polygons.mp, 0125Polygons.mp, 0150Polygons.mp., etc.. • Using GPSMapEdit, create closed polylines from the contour lines in each file. In
some cases, this means joining separate lines together using the Merge Polylines
command. You need to end up with closed polylines. If your topo lines are
broken at the edge of your map, you need to add straight line sections to close
them. • After each polyline is closed, Select All and convert all of your polylines to
polygons of type 0. We’ll change them to their final value in a later step. At this
time, you can also extend the polygons up to higher level. • At the end of this process, you will have a separate file for each elevation layer,
with closed polygons instead of topo lines.

Once you’ve created your elevation polygon files, it’s time to create a .img file. I’ve
found that it makes sense to use cGPSMapper’s [File] directive to include files that I
don’t need to edit anymore. These topo files are a perfect candidate. Comment out the
header in each file and save them in an Include directory. GPSMapEdit simply ignores
the [File] directive, allowing you to have them compiled without having to look at
them while you’re editing your basemap. See the cGPSMapper manual section 4.2.4.8
for more information on the [File] directive.

http://home.cinci.rr.com/creek/garmin.htm

Now we turn our attention to the TYP file and the available spaces in the Polygon types.
Here’s a list of the 84 standard Garmin polygon types (non-marine) from the
cGPSMapper manual:

Type ID Description Type ID Description
0x01 City 0x2b
0x02 City 0x2c
0x03 City 0x2d
0x04 Military 0x2e
0x05 Parking lot 0x2f
0x06 Parking garage 0x30
0x07 Airport 0x31
0x08 Shopping center 0x32 Sea
0x09 Marina 0x33
0x0a University 0x34
0x0b Hospital 0x35
0x0c Industrial 0x36
0x0d Reservation 0x37
0x0e Airport runway 0x38
0x0f 0x39
0x10 0x3a
0x11 0x3b Blue-unknown
0x12 0x3c Lake
0x13 Man-made area 0x3d Lake
0x14 National park 0x3e Lake
0x15 National park 0x3f Lake
0x16 National park 0x40 Lake
0x17 City park 0x41 Lake
0x18 Golf course 0x42 Lake
0x19 Sport 0x43 Lake
0x1a Cemetery 0x44 Lake
0x1b 0x45 Blue-unknown
0x1c 0x46 River
0x1d 0x47 River
0x1e State park 0x48 River
0x1f State park 0x49 River
0x20 0x4a Definition area
0x21 0x4b Background
0x22 0x4c Intermittent water
0x23 0x4d Glacier
0x24 0x4e Orchard
0x25 0x4f Scrub
0x26 0x50 Woods
0x27 0x51 Wetland
0x28 Ocean 0x52 Tundra
0x29 0x53 Flats
0x2a 0x54

The highlighted cells are polygon types available for repurposing. For this map, I’m
going to use the range of unused polygon types starting at 0x29. My choices may not
make sense to you at first, but bear with me and all will become clear.

At first glance, it seems that we’re limited to 8 colors, one for each of the 8 rendering
layers available to us. The default background color in Mapsource is #FFFFE6. Let’s
start with that as our base sea level (000’) color.

We will want to have a spread of
related colors to represent elevation.
I’m using Photoshop Elements as
my graphics editor. In the Color
Picker dialog, I can type in the hex
value of the color I’m working with,
and PSE will show me the HSB
(Hue – Saturation – Brightness)
values. Our base value of #FFFFE6
from MapSource has a Hue of 60°, Saturation of 10% and Brightness of
100%. Since this represents sea
level, or 0’ of elevation, we will use
darker values to show higher levels.

Now we need to decide what colors will be mapped to each polygon layer. I’m using a 3%
Brightness difference between layers. Photoshop Elements makes it easy to create the other
colors in the range by simply changing the Brightness percentage and reading the resulting RGB
value. Remember that other map objects are drawn on top of these colors, so we don’t want the
range of colors too dark.
 8-color Elevation Map
Elevation Polygon layer Brightness Color # Type ID
Sea level (000’) Built-in (Layer 0?) 100% FFFFE6
100’ 1 97% F7F7DF 0x2a
125’
150’ 2 94% F0F0D8 0x2c
175’
200’ 3 91% E8E8D1 0x2e
225’
250’ 4 88% E0E0CA 0x30
275’
300’ 5 85% D9D9C3 0x32
325’
350’ 6 82% D1D1BC 0x34
375’
400’ 7 79% C9C9B5 0x36
425’
450’ 8 76% C2C2AE 0x38

In your custom type definition file, we need to create color assignments for each of the
layers we’ll be representing. Here’s the definition for our 100’ and 150’ layers:

[_polygon]
Type=0x2a
String1=0x04,100’
XPM="0 0 2 1"
"1 c #F7F7DF"
"2 c #F7F7DF"
[end]

[_polygon]
Type=0x2c
String1=0x04,150’
XPM="0 0 2 1"
"1 c #F0F0D8"
"2 c #F0F0D8"
[end]

Create similar entries for the layers 3-8.

Now we need make sure that the layers are drawn with the proper priority. In the
[_drawOrder] section, assign these values as shown:

Type=0x2a,1 ; 100’
Type=0x2c,2 ; 150’
Type=0x2e,3 ; 200’
Type=0x30,4 ; 250’
Type=0x32,5 ; 300’
Type=0x34,6 ; 350’
Type=0x36,7 ; 400’
Type=0x38,8 ; 450’

Compile your custom type file, and then you can see the results of your work in MapSource:

To download this map and custom type definition to a nüvi, use SendMap 2.0 to merge
your .img file and the compiled .typ file into a GMAPSUPP.IMG file, and copy it into the
Garmin subdirectory on your nüvi. For the 60CSx, simply click ‘Upload Maps to GPS’.
Disconnect your GPSr from your PC, and then you can preview the map on the device.

There are a few notable differences. Let’s look at the nüvi first. Nüvi’s default road
types are different than MapSource. The default water color is different on the nüvi, and
the default terrain color is different. Each of these can be addressed so that the resulting
images look nearly identical.

Now let’s look at the 60CSx. Whoops. Not quite the same as MapSource and the nüvi!
Obviously it’s possible to create custom types for the 60CSx, but there’s something pretty
different about how colors are displayed.

The 60CSx is limited to a palette of 256 colors, and that palette is a fixed palette, meaning
that whatever colors you assign to your custom types will be translated into that fixed
palette. Here’s what the 60CSx palette looks like:

Any RGB colors specified in your custom type definitions will be mapped into their
closest palette equivalents. Here’s a table showing the available values of R, G and B
that can be combined, plus a 16-level grayscale:

Red Green Blue Grayscale
00 00 00 000000
39 30 20 101010
7B 65 41 202020
BD 95 6A 313131
FF CA 8B 414141
 FF B4 525252
 D5 626262
 FF 737373
 838383
 949494
 A4A4A4
 B4B4B4
 C5C5C5
 D5D5D5
 E6E6E6
 FFFFFF

The first step might be to try using the grayscale, since it
offers the smoothest color range available from this palette.
Redefining the colors to match the grayscale colors yields this
image, which looks better in the elevations but fails with the
yellow terrain. This image highlights a few changes that need
to be made:
 • We need to have control over the

representation of the lowest terrain layer of the
map so that we can fit it into our color scheme. • The grayscale range is too dark, creating
distraction from the roads and other map
elements.

The next step is to create another topo layer representing 000’ of elevation. Look at your
map, identifying the edges of the lowest terrain level. It’s normally either a water
boundary or the rectangular edge of the map. Using GPSMapEdit, select the water
boundary, copy and paste it. Right click the copy, then Modify | Kind | Convert to
Polyline. Using the Edit Nodes mode, right click to Split Polyline where the water edge
meets the land mass. Join your segments together so that you have closed polylines
representing your land masses. Right click to convert the closed polylines back to a
polygon. For our example map, we’ll make it a type 0x28.

At this point, you may be concerned about performance. If you think about how the
standard maps are rendered, this lowest level of terrain is not rendered at all. Everything
else is simply rendered on top of it, and what’s left over is the ground. We’re adding an

extra layer that’s not there in a standard map. How will that impact size and
performance? That’s a legitimate concern, and we’ll address it later in this document.

Recompile your project with the 0’ elevation layer included.
We’ll reassign the colors in the .MPT file so that 000’ of
elevation uses #FFFFFF in the grayscale range, resulting in
this image.

Definitely an improvement, but there’s still the issue of the
grayscale range being too dark, and in creating an elevation
level below the topo layers, we had to give up one of our 8
levels, reducing the detail quality of the map.

At this point, we’ve demonstrated that it’s possible to create
elevation layering, but we’re limited to 8 layers, and the
differences between the various displays require lots of extra
work. We need another approach, and it would be nice if the

new approach would be usable in MapSource, the nüvi family, and the 60CSx and its
cousins. We’re going to solve all of these problems at once.

If you’re familiar with graphics techniques, you may be familiar with the term
‘dithering’. Dithering was a technique used on displays with limited color rendering
capability to create additional apparent colors. Say for example that you have a 2-color
display, black and white, and you want to create gray. By creating patterns of alternating
black and white, the eye reads gray. Let’s use XPM to explain, since we’ll be using it in
our .MPT file in just a moment.

[_polygon]
Type=0x2a
String1=0x04,100’
XPM=”8 8 2 1”
“ c None”
“* c #e6e6e6”
"* * * * "
" * * * *"
"* * * * "
" * * * *"
"* * * * "
" * * * *"
"* * * * "
" * * * *"
[end]

Assuming that we have a white background (#ffffff), this pattern will alternate pixels of
#e6e6e6 with transparent pixels, which will show #ffffff from below, creating a dithered
color that appears to be halfway between the two. Depending on the dot size of the
display, you may be able to see this pattern as diagonally striped lines, but the effect will
still be an area of an apparently different color. Now suppose that we want to add the
next color in our spread. We use the same dither pattern, except we shift it by one line.

[_polygon]
Type=0x2b
String1=0x04,125’
XPM=”8 8 2 1”
“ c None”
“* c #e6e6e6”
" * * * *"
"* * * * "
" * * * *"
"* * * * "
" * * * *"
"* * * * "
" * * * *"
"* * * * "
[end]

Notice that the first line of this bitmap starts with a space instead of a star. Because this
pattern represents a higher elevation than the previous pattern, it will always be shown in
combination with (i.e., above) the previous pattern. The actual displayed result when
both patterns are rendered will be a solid area of #e6e6e6 pixels. So we use the same
color assignment for both patterns. When only the first pattern is rendered, we get a “half
color”. When both patterns are rendered, we get the “full color”.

An additional bonus is that because the two patterns don’t overlap – in other words, their
pixels are drawn in each other’s transparent spaces – the two patterns can be rendered
together on the same level. This means that instead of 8 colors, we now have a possible
16 colors.

Before we go any further, I’m going to reserve the lowest
layer for the sea level terrain. Rather than render it as a
pattern, I think it looks better to render it on its own solid
color layer, replacing the default yellow on the 60CSx. That
leaves us with 7 layers (2-8), each with two apparent colors
for a total of 15. This screen grab shows the result.

This is definitely a smoother representation of the elevation
layers, but it’s still too dark, since we have to move halfway
down the grayscale to get all 15 colors displayed.
By now maybe you’re thinking “If we can create two colors
with dithering and get twice the colors, how about creating
four colors and four times the color range?”

And that’s exactly the next step. The table below represents four distinct but interlocking
dither patterns that can be combined on a single layer.

[_polygon]
Type=0x2a
String1=0x04,100’
XPM=”8 8 2 1”
“ c None”
“* c #e6e6e6”
"* * "
" * * "
" * * "
" * *"
"* * "
" * * "
" * * "
" * *"
[end]

[_polygon]
Type=0x2b
String1=0x04,125’
XPM=”8 8 2 1”
“ c None”
“* c #e6e6e6”
" * * "
" * * "
" * *"
"* * "
" * * "
" * * "
" * *"
"* * "
[end]

[_polygon]
Type=0x2c
String1=0x04,150’
XPM=”8 8 2 1”
“ c None”
“* c #e6e6e6”
" * * "
" * *"
"* * "
" * * "
" * * "
" * *"
"* * "
" * * "
[end]

[_polygon]
Type=0x2d
String1=0x04,175’
XPM=”8 8 2 1”
“ c None”
“* c #e6e6e6”
" * *"
"* * "
" * * "
" * * "
" * *"
"* * "
" * * "
" * * "
[end]

25% color 50% color 75% color 100% color

All of these patterns can be rendered on the same level,
because their pixels interlock. With our reserved base layer
for 000’, we have 7x4=28 + 1 = 29 total elevation layers
possible. And, we have addressed the “too dark” problem by
creating 4 steps for each grayscale color – 25%, 50%, 75%
and 100%.

You can definitely see the dithering, but the effect is not
distracting. This image is rendered using only 17 of the
possible 29 colors.

Now we have a technique that can be used with MapSource,
the nüvi family, and the 60CSx and its cousins.

So how does this same image look in MapSource and on the nüvi? Apart from the
differences in road rendering and color of the water, the elevation layering is virtually
identical.

For map developers supporting the 60CSx and its compatible cousins, you can
experiment with using other color ranges. Blue has the most potential with 8 levels, but
the steps are twice as large as the grayscale palette. When you look at the results on the
60CSx, you will see that it actually looks quite a bit better than the screen grabs I’m
showing here. The great thing about custom type files is that it takes very little time to
try different color schemes.

For map developers supporting the nuvi family, you are not at all limited by color
choices. Take a look at a variety of printed atlas legends to see how elevation is
rendered, and try some different color schemes. This map has elevation detail every 100
meters up to 3000 meters:
 MapSource – 32 color dither nüvi – 32 color dither

Finally, a brief discussion of performance.

Obviously, we are adding a lot of data to a map to represent elevation. Whether or not
this is an acceptable tradeoff is something that you as a mapmaker will have to decide.
MapSource takes noticeably longer to render these maps when you zoom or scroll.
Performance on the two GPSr’s that I’ve tested this technique with is actually not too
bad. But again, this is subjective, and it will depend entirely upon your dataset and
expectations. Additionally, you can expect to experience longer compile times with the
additional polygon definitions in your map.

I do have one recommendation for using elevation layers which will improve
performance and shorten compile time. Consider turning off the elevation information at
lower levels in your map. In other words, if you are zoomed in to street level, you
probably don’t need to see the elevation information at the same time. By eliminating the
layer information from the lower levels you can improve performance.

Thanks to Stan and Konstantin for making all of this possible!

